Jonathan Riddell hat seinen Rückzug aus der KDE-Community bekannt gegeben. In einem sehr persönlichen Blogbeitrag mit dem Titel „Adios Chicos, 25 Years of KDE“ blickt er auf eine lange, bewegte Zeit zurück. Er spricht offen über Erfolge, aber auch über Konflikte und den schwierigen Abschied. Bekannt wurde Riddell vor allem als Gründer von Kubuntu, der KDE-basierten Ubuntu-Variante. Über […]
Die Linux Mint Entwickler haben die Beta von LMDE 7 veröffentlicht. Das System trägt den Codenamen Gigi und basiert erstmals auf Debian 13 Trixie. Damit bietet LMDE eine moderne Alternative zum klassischen Linux Mint mit Ubuntu. Das Ziel ist ein System mit vollem Mint-Erlebnis – ohne Ubuntu als Grundlage. Gigi bringt viele Funktionen von Linux Mint 22.2 mit. Neu ist […]
Mit der Veröffentlichung von Frameworks 6.18 hat das KDE-Projekt seine Sammlung an Zusatzbibliotheken für Qt erneut erweitert. Über einen Monat nach dem letzten Release folgt nun eine Version, die zahlreiche Detailverbesserungen und Fehlerkorrekturen für Entwickler bietet. Zu den auffälligsten Änderungen zählt eine Optimierung in Baloo, dem Dateisuchdienst von KDE. Dort wurden Probleme bei der Groß- […]
Die Entwickler der Linux-Distribution openSUSE haben angekündigt die Unterstützung für das Dateisystem Bcachefs in Tumbleweed mit dem kommenden Kernel 6.17 zu deaktivieren. Diese Entscheidung betrifft auch die neue Distribution Slowroll. Der Schritt erfolgt nach einer Änderung im offiziellen Linux-Kernelprojekt. Mit Kernel 6.17 hat Linus Torvalds den Status von Bcachefs im Kernel-Code angepasst. Das Dateisystem gilt […]
Das Q4OS-Projekt hat die Vefügbarkeit von Version 6.1 der gleichnamigen Linux-Distribution angekündigt. Die Veröffentlichung trägt den Codenamen Andromeda und basiert auf Debian 13 mit dem Namen Trixie. Es handelt sich um eine stabile Version mit Langzeitunterstützung für mindestens fünf Jahre. Q4OS richtet sich an Nutzer, die eine klassische Desktop-Erfahrung bevorzugen. Die neue Version bietet zwei […]
Das KDE-Projekt hat die erste Alpha-Version von KDE Linux veröffentlicht. Ziel des neuen Systems ist es, eine Plattform für aktuelle Entwicklungsstände von KDE Plasma und den KDE Anwendungen bereitzustellen. Damit bietet das Projekt erstmals ein eigenes Betriebssystem an, das nicht auf eine bestehende Distribution aufsetzt. Im Gegensatz zu KDE neon, das auf Ubuntu basiert, nutzt […]
Das Linux Mint Projekt treibt die Entwicklung seiner Debian-basierten Variante weiter voran. Projektleiter Clement Lefebvre kündigte in einem aktuellen August Monatsbericht die kommende Veröffentlichung von LMDE 7 an. Eine öffentliche Beta soll noch im September erscheinen. LMDE steht für Linux Mint Debian Edition und richtet sich an Nutzer, die Mint ohne Ubuntu-Unterbau verwenden möchten. Die […]
Die Document Foundation hat LibreOffice 25.2.6 freigegeben. Die Version ist ab sofort für Windows, macOS und Linux erhältlich. Es handelt sich um eine der letzten geplanten Versionen von sieben geplanten Wartungsupdates für die 25.2-Serie. Die Aktualisierung bringt zahlreiche Fehlerkorrekturen mit sich. Behandelt wurden unter anderem Speicherlecks im Modul libmacabdrv1 sowie Probleme mit Schriftarten im Textverarbeitungsprogramm […]
Mozilla hat angekündigt, im Oktober 2025 den Support für Firefox auf 32-Bit-Linux-Systemen einzustellen. Die kommende Version 144 wird die letzte sein, die offiziell auf dieser Architektur läuft. Die darauffolgende Version 145 wird somit keine 32-Bit-Pakete mehr anbieten. Über Jahre hinweg hatte Mozilla im Gegensatz zu vielen anderen Anbietern weiterhin 32-Bit-Builds gepflegt. Ziel war es, älteren […]
TUXEDO Computers hat eine neue Version seines automatisierten Linux-Installationssystems WebFAI veröffentlicht. Mit WebFAI 2.1 lässt sich nun auch das neue Debian 13 „Trixie“ automatisch installieren, wahlweise mit GNOME oder KDE Plasma. Die Lösung richtet sich an Nutzer, die eine vorkonfigurierte Linux-Installation bevorzugen, wie sie direkt bei TUXEDO ausgeliefert wird. WebFAI steht für „Fully Automated Installation“ […]
Die KDE-Community hat Plasma 6.4.5 veröffentlicht, das fünfte und voraussichtlich letzte Wartungsupdate der aktuellen Plasma-Generation. Damit schließen die Entwickler eine Reihe von kleineren Fehlern, bevor im kommenden Monat das größere Plasma 6.5 erscheint. Ein Schwerpunkt des Updates liegt auf dem Fenstermanager KWin. Besonders unter Wayland wurden mehrere Probleme rund um Farbmanagement, Rendering und die Behandlung […]
Microsofts quelloffene Dokumentendatenbank DocumentDB basiert auf PostgreSQL und ist vollständig kompatibel mit MongoDB. Nun wurde das Projekt der Linux Foundation übergeben, um eine unabhängige Weiterentwicklung sicherzustellen. Dieser Schritt soll der Community eine stabile und offene Grundlage bieten, frei von kommerzieller Kontrolle. DocumentDB wurde Anfang des Jahres unter einer freien Lizenz veröffentlicht und hat sich schnell […]
Die Aufgabenstellung ist sehr speziell, und dementsprechend wird dieser Beitrag vermutlich nur wenig Leute interessieren. Aber egal: Ich habe mich drei Tage damit geärgert, vielleicht profitieren ein paar Leser von meinen Erfahrungen …
Die Zielsetzung ist bereits in der Überschrift beschrieben. Ich besitze einen Mini-PC mit AMD 8745H-CPU und 32 GiB RAM. Die CPU enthält auch eine integrierte GPU (Radeon 780M). Auf diesem Rechner wollte ich das momentan sehr beliebte Sprachmodell gpt-oss-20b ausführen. Dieses Sprachmodell ist ca. 11 GiB groß, umfasst 20 Milliarden Parameter in einer etwas exotischen Quantifizierung. (MXFP4 wurde erst 2024 standardisiert und bildet jeden Parameter mit nur 4 Bit ab. Die Besonderheit besteht darin, dass für unterschiedliche Teile des Modells unterschiedliche Skalierungsfaktoren verwendet werden, so dass die Parameter trotz der wenigen möglichen Werte einigermaßen exakt abgebildet werden können.)
Das Sprachmodell wird von der Firma OpenAI kostenlos angeboten. Die Firma gibt an, dass die 20b-Variante ähnlich gute Ergebnisse wie das bis 2024 eingesetzt kommerzielle Modell o3-mini liefert, und auch KI-Experte Simon Willison singt wahre Lobeshymnen auf das Modell.
PS: Ich habe alle Tests unter Fedora 42 durchgeführt.
Warum nicht Ollama?
Für alle, die nicht ganz tief in die lokale Ausführung von Sprachmodellen eintauchen wollen, ist Ollama zumeist die erste Wahl. Egal, ob unter Windows, Linux oder macOS, viele gängige Sprachmodelle können damit unkompliziert ausgeführt werden, in der Regel mit GPU-Unterstützung (macOS, Windows/Linux mit NVIDIA-GPU bzw. mit ausgewählten AMD-GPUs).
Bei meiner Hardware — und ganz allgemein bei Rechnern mit einer AMD-iGPU — ist Ollama aktuell aber NICHT die erste Wahl:
ROCm: Ollama setzt bei NVIDIA-GPUs auf das Framework CUDA (gut), bei AMD-GPUs auf das Framework ROCm (schlecht). Dieses Framework reicht alleine vermutlich als Grund, warum AMD so chancenlos gegen NVIDIA ist. Im konkreten Fall besteht das Problem darin, dass die iGPU 780M (interner ID gfx1103) offiziell nicht unterstützt wird. Die Empfehlung lautet, ROCm per Umgebungsvariable zu überzeugen, dass die eigene GPU kompatibel zu einem anderen Modell ist (HSA_OVERRIDE_GFX_VERSION=11.0.2). Tatsächlich können Sprachmodelle dann ausgeführt werden, aber bei jeder Instabilität (derer es VIELE gibt), stellt sich die Frage, ob nicht genau dieser Hack der Anfang aller Probleme ist.
Speicherverwaltung: Auch mit diesem Hack scheitert Ollama plus ROCm-Framework an der Speicherverwaltung. Bei AMD-iGPUs gibt es zwei Speicherbereiche: fix per BIOS allozierten VRAM sowie dynamisch zwischen CPU + GPU geteiltem GTT-Speicher. (Physikalisch ist der Speicher immer im RAM, den sich CPU und GPU teilen. Es geht hier ausschließlich um die Speicherverwaltung durch den Kernel + Grafiktreiber.)
Ollama alloziert zwar den GTT-Speicher, aber maximal so viel, wie VRAM zur Verfügung steht. Diese (Un)Logik ist am besten anhand von zwei Beispielen zu verstehen. Auf meinem Testrechner habe ich 32 GiB RAM. Standardmäßig reserviert das BIOS 2 GiB VRAM. Der Kernel markiert dann 14 GiB als GTT. (Das kann bei Bedarf mit den Kerneloptionen amdttm.pages_limit und amdttm.page_pool_size verändert werden.) Obwohl mehr als genug Speicher zur Verfügung steht, sieht Ollama eine Grenze von 2 GiB und kann nur winzige LLMs per GPU ausführen.
Nun habe ich im BIOS das VRAM auf 16 GiB erhöht. Ollama verwendet nun 16 GiB als Grenze (gut), nutzt aber nicht das VRAM, sondern den GTT-Speicher (schlecht). Wenn ich nun ein 8 GiB großes LLM mit Ollama ausführen, dann bleiben fast 16 GiB VRAM ungenutzt! Ollama verwendet 8 GiB GTT-Speicher, und für Ihr Linux-System bleiben gerade einmal 8 GiB RAM übrig. Es ist zum aus der Haut fahren! Im Internet gibt es diverse Fehlerberichte zu diesem Problem und sogar einen schon recht alten Pull-Request mit einem Vorschlag zur Behebung des Problems. Eine Lösung ist aber nicht Sicht.
Ich habe mich mehrere Tage mit Ollama geärgert. Schade um die Zeit. (Laut Internet-Berichten gelten die hier beschriebenen Probleme auch für die gehypte Strix-Halo-CPU.)
Next Stop: llama.cpp
Etwas Internet-Recherche liefert den Tipp, anstelle von Ollama das zugrundeliegende Framework llama.cpp eben direkt zu verwenden. Ollama greift zwar selbst auf llama.cpp zurück, aber die direkte Verwendung von llama.cpp bietet andere GPU-Optionen. Dieser Low-Level-Ansatz ist vor allem bei der Modellauswahl etwas umständlicher ist. Zwei Vorteile können den Zusatzaufwand aber rechtfertigen:
Die neuste Version von llama.cpp unterstützt oft ganz neue Modelle, mit denen Ollama noch nicht zurechtkommen.
llama.cpp kann die GPU auf vielfältigere Weise nutzen als Ollama. Je nach Hardware und Treiber kann so eventuell eine höhere Geschwindigkeit erzielt bzw. der GPU-Speicher besser genutzt werden, um größere Modelle auszuführen.
Die GitHub-Projektseite beschreibt mehrere Installationsvarianten: Sie können llama.cpp selbst kompilieren, den Paketmanager nix verwenden, als Docker-Container ausführen oder fertige Binärpakete herunterladen (https://github.com/ggml-org/llama.cpp/releases). Ich habe den einfachsten Weg beschritten und mich für die letzte Option entschieden. Der Linux-Download enthält genau die llama.cpp-Variante, die für mich am interessantesten war — jene mit Vulkan-Unterstützung. (Vulkan ist eine 3D-Grafikbibliothek, die von den meisten GPU-Treibern unter Linux gut unterstützt wird.) Die Linux-Version von llama.cpp wird anscheinend unter Ubuntu kompiliert und getestet, dementsprechend heißt der Download-Name llama-<version>-bin-ubuntu-vulkan-x86.zip. Trotz dieser Ubuntu-Affinität ließen sich die Dateien bei meinen Tests aber problemlos unter Fedora 42 verwenden.
Nach dem Download packen Sie die ZIP-Datei aus. Die resultierenden Dateien landen im Unterverzeichnis build/bin. Es bleibt Ihnen überlassen, ob Sie die diversen llama-xxx-Kommandos direkt in diesem Verzeichnis ausführen, das Verzeichnis zu PATH hinzufügen oder seinen Inhalt in ein anderes Verzeichnis kopieren (z.B. nach /usr/local/bin`).
cd Downloads
unzip llama-b6409-bin-ubuntu-vulkan-x64.zip
cd build/bin
./llama-cli --version
loaded RPC backend from ./build/bin/libggml-rpc.so
ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = AMD Radeon 780M Graphics (RADV PHOENIX) (radv) ...
loaded Vulkan backend from ./build/bin/libggml-vulkan.so
loaded CPU backend from ./build/bin/libggml-cpu-icelake.so
version: 6409 (d413dca0)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04.2) for x86_64-linux-gnu
Für die GPU-Unterstützung ist entscheidend, dass auf Ihrem Rechner die Bibliotheken für die 3D-Bibliothek Vulkan installiert sind. Davon überzeugen Sie sich am einfachsten mit vulkaninfo aus dem Paket vulkan-tools. Das Kommando liefert fast 4000 Zeilen Detailinformationen. Mit einem Blick in die ersten Zeilen stellen Sie fest, ob Ihre GPU unterstützt wird.
Um llama.cpp auszuprobieren, brauchen Sie ein Modell. Bereits für Ollama heruntergeladene Modelle sind leider ungeeignet. llama.cpp erwartet Modelle als GGUF-Dateien (GPT-Generated Unified Format). Um die Ergebnisse mit anderen Tools leicht vergleichen zu können, verwende ich als ersten Testkandidat immer Llama 3. Eine llama-taugliche GGUF-Variante von Llama 3.1 mit 8 Milliarden Parametern finden Sie auf der HuggingFace-Website unter dem Namen bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M.
Das folgende Kommando lädt das Modell von HuggingFace herunter (Option -hf), speichert es im Verzeichnis .cache/llama.cpp, lädt es, führt den als Parameter -p angegebenen Prompt aus und beendet die Ausführung dann. In diesem und allen weiteren Beispielen gehe ich davon aus, dass sich die llama-Kommandos in einem PATH-Verzeichnis befinden. Alle Ausgaben sind aus Platzgründen stark gekürzt.
llama-cli -hf bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M \
-p 'bash/Linux: explain the usage of rsync over ssh'
... (diverse Debugging-Ausgaben)
Running in interactive mode.
- Press Ctrl+C to interject at any time.
- Press Return to return control to the AI.
- To return control without starting a new line, end your input with '/'.
- If you want to submit another line, end your input with '\'.
- Not using system message. To change it, set a different value via -sys PROMPT
> bash/Linux: explain the usage of rsync over ssh
rsync is a powerful command-line utility that enables you to
synchronize files and directories between two locations. Here's
a breakdown of how to use rsync over ssh: ...
> <Strg>+<D>
load time = 2231.02 ms
prompt eval time = 922.83 ms / 43 tokens (46.60 tokens per second)
eval time = 31458.46 ms / 525 runs (16.69 tokens per second)
Sie können llama-cli mit diversen Optionen beeinflussen, z.B. um verschiedene Rechenparameter einzustellen, die Länge der Antwort zu limitieren, den Systemprompt zu verändern usw. Eine Referenz gibt llama-cli --help. Deutlich lesefreundlicher ist die folgende Seite:
Mit llama-bench können Sie diverse Benchmark-Tests durchführen. Im einfachsten Fall übergeben Sie nur das Modell in der HuggingFace-Notation — dann ermittelt das Kommando die Token-Geschwindigkeit für das Einlesen des Prompts (Prompt Processing = pp) und die Generierung der Antwort (Token Generation = tg). Allerdings kennt llama-bench die Option -hf nicht; vielmehr müssen Sie mit -m den Pfad zur Modelldatei übergeben:
llama-bench -m ~/.cache/llama.cpp/bartowski_Meta-Llama-3.1-8B-Instruct-GGUF_Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
model size test token/s (Tabelle gekürzt ...)
----------------------- --------- ------- --------
llama 8B Q4_K - Medium 4.58 GiB pp512 204.03
llama 8B Q4_K - Medium 4.58 GiB tg128 17.04
Auf meinem Rechner erreicht llama.cpp mit Vulkan nahezu eine identische Token-Rate wie Ollama mit ROCm (aber ohne die vielen Nachteile dieser AMD-Bibliothek).
AMD-Optimierung
Bei meinen Tests auf dem schon erwähnten Mini-PC mit AMD 8745H-CPU mit der iGPU 780M und 32 GiB RAM funktionierte llama.cpp mit Vulkan viel unkomplizierter als Ollama mit ROCm. Ich habe die VRAM-Zuordnung der GPU wieder zurück auf den Defaultwert von 2 GiB gestellt. Per Default steht llama.cpp auf meinem Rechner dann ca. der halbe Arbeitsspeicher (2 GiB VRAM plus ca. 14 GiB GTT) zur Verfügung. Vulkan kann diesen Speicher ohne merkwürdige Hacks mit Umgebungsvariablen korrekt allozieren. Das reicht ohne jedes Tuning zur Ausführung des Modells gpt-20b aus (siehe den folgenden Abschnitt). So soll es sein!
Wenn Sie noch mehr Speicher für die LLM-Ausführung reservieren wollen, müssen Sie die Kerneloptionen pages_limit und pages_pool_size des AMDGPU-Treibers verändern. Wenn Sie 20 GiB GGT-Speicher nutzen wollen, müssen Sie für beide Optionen den Wert 5242880 angeben (Anzahl der 4-kByte-Blöcke):
Danach aktualisieren Sie die Initrd-Dateien und führen einen Neustart durch:
sudo update-initramfs -u # Debian und Ubuntu
sudo dracut --regenerate-all --force # Fedora, RHEL, SUSE
sudo reboot
sudo dmesg | grep "amdgpu.*memory"
amdgpu: 2048M of VRAM memory ready (<-- laut BIOS-Einstellung)
amdgpu: 20480M of GTT memory ready (<-- laut /etc/modprobe.d/amd.conf)
Modellauswahl
Mit llama.cpp können Sie grundsätzlich jedes Modell im GPT-Generated Unified Format (GGUF) ausführen. Auf der Website von HuggingFace stehen Tausende Modelle zur Wahl:
Die Herausforderung besteht darin, für die eigenen Zwecke relevante Modelle zu finden. Generell ist es eine gute Idee, besonders populäre Modelle vorzuziehen. Außerdem werden Sie rasch feststellen, welche Modellgrößen für Ihre Hardware passen. Die höhere Qualität großer Modelle bringt nichts, wenn die Geschwindigkeit gegen Null sinkt.
gpt-oss-20b
Eine llama.cpp-kompatible Version finden hat ggml-org auf HuggingFace gespeichert. Sofern ca. 15 GiB freier VRAM zur Verfügung stehen (unter AMD: VRAM + GTT), führt llama.cpp das Modell problemlos und beachtlich schnell aus. Beachten Sie, dass es sich hier um ein »Reasoning-Modell« handelt, das zuerst über das Problem nachdenkt und diesen Denkprozess auch darstellt. Danach wird daraus das deutlich kompaktere Ergebnis präsentiert.
Die Kommandos llama-cli und llama-bench dienen in erster Linie zum Testen und Debuggen. Sobald Sie sich einmal überzeugt haben, dass llama.cpp grundsätzlich funktioniert, werden Sie das Programm vermutlich im Server-Betrieb einsetzen. Das entsprechende Kommando lautet llama-server und ist grundsätzlich wie llama-cli aufzurufen. Falls Sie llama-server unter einem anderen Account als llama-cli aufrufen, aber schon heruntergeladene Modelle weiterverwenden wollen, übergeben Sie deren Pfad mit der Option -m:
llama-server -c 0 -fa on --jinja -m /home/kofler/.cache/llama.cpp/ggml-org_gpt-oss-20b-GGUF_gpt-oss-20b-mxfp4.gguf
Sie können nun unter http://localhost:8080 auf einen Webserver zugreifen und das gestartete Modell komfortabel bedienen. Im Unterschied zu Ollama hält llama.cpp das Modell dauerhaft im Arbeitsspeicher. Das Modell kann immer nur eine Anfrage beantworten. Die Verarbeitung mehrere paralleler Prompts erlaubt --parallel <n>.
Die Web-Oberfläche von llama-server
Es ist unmöglich, mit einem Server mehrere Modelle parallel anzubieten. Vielmehr müssen Sie mehrere Instanzen von llama-server ausführen und jedem Dienst mit --port 8081, --port 8082 usw. eine eigene Port-Nummer zuweisen. (Das setzt voraus, dass Sie genug Video-Speicher für alle Modelle zugleich haben!)
Falls auch andere Rechner Server-Zugang erhalten sollen, übergeben Sie mit --host einen Hostnamen oder eine IP-Nummer im lokalen Netzwerk. Mit --api-key oder --api-key-file können Sie den Server-Zugang mit einem Schlüssel absichern. Mehr Details zu den genannten Optionen sowie eine schier endlose Auflistung weiterer Optionen finden Sie hier:
Jetzt habe ich drei Tage versucht, gpt-oss per GPU auszuführen. Hat sich das gelohnt? Na ja. Mit -ngl 0 kann die Token Generation (also das Erzeugen der Antwort per Sprachmodell) von der GPU auf die CPU verlagert werden. Das ist natürlich langsamer — aber erstaunlicherweise nur um 25%.
Warum ist der Unterschied nicht größer? Weil die 780M keine besonders mächtige GPU ist und weil die Speicherbandbreite der iGPU viel kleiner ist als bei einer dezidierten GPU mit »echtem« VRAM.
Zur Einordnung noch zwei Vergleichszahlen: MacBook Pro M3: 42 Token/s (mit GPU) versus 39 Token/s (nur CPU)
Nach über drei Jahren Entwicklungszeit steht nun der nächste große Schritt bevor: Am Donnerstag, den 25. September soll die Beta-Version des neuen COSMIC Desktops erscheinen,gemeinsam mit der Beta von Pop!_OS 24.04 LTS. Das gab der Hardwarehersteller System76 über den firmeneigenen X Kanal bekannt. Der COSMIC-Desktop wird vollständig in Rust entwickelt und stellt einen radikalen Bruch mit dem […]
Spätestens seitdem Neobroker mit hohem Werbebudget den Markt auffrischen, ist für viele Menschen das Thema Geldanlage präsent geworden. Noch vor ein paar Jahren war der Erwerb von Wertpapieren mit solchen großen Hürden verbunden, dass sich viele Menschen nicht auf den Kapitalmarkt trauten. Inzwischen ist es auch für nicht-Finanzgurus wie mich möglich, sich unkompliziert Aktien und andere Anlageformen zuzulegen. Die Apps der Banken und Broker sind inzwischen recht benutzerfreundlich, was die Hürde weiter senkt. Wenn man sich der Sache wieder etwas ernster annähern möchte, kommt man mit den Apps aber schnell an seine Grenzen. Um besser den Überblick über meine Finanzen zu behalten, habe ich mich auf die Suche nach einer Software gemacht, die mich dabei unterstützt. Und ich bin in der Open Source Community fündig geworden.
Meine Fragestellung war folgende: Wie diversifiziert ist mein Portfolio eigentlich? In welchen Regionen und Branchen bin ich wie stark präsent? Welches sind meine Top-Firmen? Wie teilt sich mein Vermögen auf Aktien, ETFs und Cash auf? Wie stark bin ich in Small-Caps investiert? Wann und bei welchen Kurswerten habe ich gekauft und verkauft? Wie viele Dividenden habe ich inzwischen erhalten, usw.? Bisher habe ich das mit Excel lösen können. Die Fact-Sheets der ETF sind im Netz zu finden, dort sind die Verteilungen auf Regionen, Branchen usw. nachzulesen. Mit viel Tipparbeit holt man sich die aktuellen Verteilungen in die Datei, gewichtet sie nach aktuellem Wert im Portfolio und lässt es sich als Diagramm anzeigen. Aber: Das ist sehr aufwendig.
Portfolio Performance: Das mächtige Open Source Finanztool
Portfolio Performance ist hier einfacher. Nach der Installation kann man die PDF-Dateien seiner Bank und Broker importieren. Einfach den Kontoauszug und die Kauf- bzw. Verkaufsnachweise, Dividendenausschüttungen usw. in das Programm laden, und schon hat man den perfekten Überblick. Das Programm läuft lokal, was die Frage nach Datensicherheit vollkommen entschärft. Niemand hat Zugriff darauf, niemand kann sich die Daten ansehen. Meine Daten bleiben bei mir.
Neben dem PDF-Import der Bankdaten gibt es noch etliche weitere Importmöglichkeiten. Am gängigsten ist vermutlich das CSV-Format, das sich über einen tollen Assistenten gut importieren lässt.
Historische Kursdaten sind erstmal nicht vorhanden. Man kann sie sich über mehrere Wege ins Programm holen. Für mich am einfachsten ist der Weg über die Datenbank von Portfolio Performance selbst. Dort muss man ein kostenloses Benutzerkonto anlegen, dann kann man auf die historischen Daten dort zugreifen. Etliche andere Finanzportale sind ebenfalls kompatibel. Am Ende geht hier auch wieder CSV.
ETF- und Portfolio-Diversifikation anzeigen lassen
Über die Diagramme „Berichte → Vermögensaufstellung“ kann man sich anzeigen lassen, über welche Anlageklassen man zu welchen Teilen verfügt. Eine der Hauptfragen meinerseits war jedoch: Wie sieht es mit meiner ETF-Diversifikation aus?. Das geht derzeit noch nicht nativ in Portfolio Performance. Hierfür braucht man einen Drittanbieter.
Glücklicherweise gibt es findige Leute in der sehr aktiven Community, die sich die gleichen Fragen gestellt haben und eine Lösung zur Verfügung stellen. Über ein Skript des Users Alfonso1Qto12 kann man sich beispielsweise die Zusammensetzung der ETF über die Morningstar-API direkt in sein Portfolio Performance schreiben lassen.
Hinweis: Dieses Skript ist nach Aussage des Entwicklers experimentell und sollte nur mit einer Kopie der echten Daten benutzt werden! Stand September 2025 muss man den alternativen Branch wechseln, weil main noch auf eine alte API zugreift.
Über die Flag top_holdings 50 lasse ich mir aus den ETF die 50 wertvollsten Firmen ausgeben. Empfohlen wird, auf weniger als 100 Firmen zu gehen, um die Performance des Programms nicht zu gefährden.
Mit diesem Skript werden die Wertpapiere ihren Ländern, Regionen, Holdings usw. anteilsweise zugeordnet. Diese Daten werden direkt in die XML-Datei geschrieben und lassen sich anschließend in Portfolio Performance unter den „Klassifizierungen“ betrachten. Es gibt verschiedene Visualisierungsarten, am übersichtlichsten finde ich die Tabelle, das Kreis- und das Flächendiagramm.
Weitere Schritte und Lehren aus den Daten
Mit Portfolio Performance erhält man eine tolle Übersicht über seine Finanzen. Wie der Name schon verrät, kann man sich hier tolle Dashboards bauen, um die Performance im eigenen Portfolio zu überwachen. Alle gängigen Kriterien sind vorhanden und können in Dashboards oder vielfältige Diagramme eingebaut und visualisiert werden.
Die Daten lassen ein Rebalancing zu, dafür gibt es eigens eingebaute Funktionen. Über eine Smartphone-App lassen sich die Daten sogar auf dem Handy anzeigen. Die Synchronisation muss hier über Cloudanbieter durchgeführt werden, also zum Beispiel über die Nextcloud oder Dropbox. Daten einpflegen lassen sich übers Smartphone allerdings nicht.
Zusammengefasst: Wer eine sehr mächtige Open Source Software sucht, mit der man
sein Portfolio im Blick behalten kann,
das Daten aus vielen Quellen (inkl. PDFs von Banken und Brokern) verarbeiten kann,
Das Debian‑Projekt hat das erste Point-Release für seine stabile Version Debian 13, Codename „Trixie“, herausgebracht. Es liefert umfangreiche Fehlerkorrekturen und Sicherheitsupdates, die die Systemstabilität deutlich erhöhen. Wichtig ist: Dieses Update stellt keine neue Version dar, sondern aktualisiert bestehende Pakete. Sie brauchen Ihre alten „Trixie“-Installationsmedien nicht wegzuwerfen. Besteht bereits ein „Trixie“-System, genügt ein klassisches Update über einen aktuellen Debian‑Mirror, um auf den […]
Canonical treibt die Integration von Rust in das Herz des Ubuntu-Systems weiter konsequent voran. Mit Ubuntu 25.10, Codename „Questing Quokka“, ersetzt die Distribution gleich zwei zentrale Systemkomponenten durch moderne Rust-Alternativen: Sowohl das Befehlszeilentool sudo als auch die traditionellen Coreutils stammen künftig aus Rust-Projekten. Bereits Anfang des Jahres hatte Canonical angekündigt, sudo-rs und uutils, eine Rust-basierte Neuimplementierung der GNU Coreutils, zur Standardlösung zu […]
Es gibt verschiedene Möglichkeiten, Flatpaks zu entdecken und zu installieren. Das reicht vom Terminal GNOME Software und KDE Discover bis hin zu Flathub. Jetzt kommt mit Bazaar ein reiner Flatpak-Shop hinzu.
Debian zieht mit anderen Distributionen gleich und hängt mit Debian 13 das Verzeichnis /tmp als tmpfs-Dateisystem ins RAM ein. Wir klären, was man dazu wissen sollte.
GNOME 49 reaktiviert X-11-Sitzungen aus technischen Gründen für die Veröffentlichung von GNOME 49 am 17. September. Die Probleme sollen mit GNOME 50 behoben sein.
Die neue Version von Linux Mint ist veröffentlicht. Mit dem Codenamen „Zara“ steht Linux Mint 22.2 nun auf allen offiziellen Spiegelservern zum Download bereit. Die finalen ISO-Abbilder wurden in dieser Woche ohne Kommentar hochgeladen. Die offizielle Ankündigung ist indes noch nicht erfolgt. Linux Mint 22.2 basiert auf Ubuntu 24.04 LTS mit dem Namen Noble Numbat. […]