Im Beitrag „SMLIGHT SLZB-07: OpenThread RCP Firmware flashen“ habe ich euch gezeigt, wie ihr die Openthread RCP Firmware auf den SMLIGHT SLZB-07 flasht. In diesem Beitrag zeige ich euch nun, wie ihr mit dem...
Ich habe mir kürzlich einen SMLIGHT SLZB-07 und einen SMLIGHT SLZB-07p7 gekauft. Ersteren um mit Thread irgendwann rumspielen zu können und letzteren als Ersatz für meinen Sonoff ZB Dongle-P. Wenn ihr auf’s Veröffentlichungsdatum dieses...
Die letzten Wochen habe ich mich ziemlich intensiv mit Home Assistant auseinandergesetzt. Dabei handelt es sich um eine Open-Source-Software zur Smart-Home-Steuerung. Home Assistant (HA) ist eine spezielle Linux-Distribution, die häufig auf einem Raspberry Pi ausgeführt wird. Dieser Artikel zeigt die nicht ganz unkomplizierte Integration meines Fronius Wechselrichters in das Home-Assistant-Setup. (Die Basisinstallation von HA setze ich voraus.)
Die Abbildung ist wie folgt zu interpretieren: Heute bis 19:00 wurden im Haushalt 8,2 kWh elektrische Energie verbraucht, aber 13,6 kWh el. Energie produziert (siehe die Kreise rechts). 3,7 kWh wurden in das Netz eingespeist, 0,4 kWh von dort bezogen.
Das Diagramm »Energieverbrauch« (also das Balkendiagramm oben): In den Morgen- und Abendstunden hat der Haushalt Strom aus der Batterie bezogen (grün); am Vormittag wurde der Speicher wieder komplett aufgeladen (rot). Am Nachmittag wurde Strom in das Netz eingespeist (violett). PV-Strom, der direkt verbraucht wird, ist gelb gekennzeichnet.
Fronius-Integration
Bevor Sie mit der Integration des Fronius-Wechselrichters in das HA-Setup beginnen, sollten Sie sicherstellen, dass der Wechselrichter, eine fixe IP-Adresse im lokalen Netzwerk hat. Die erforderliche Einstellung nehmen Sie in der Weboberfläche Ihres WLAN-Routers vor.
Außerdem müssen Sie beim Wechselrichter die sogenannte Solar API aktivieren. Über diese REST-API können diverse Daten des Wechselrichters gelesen werden. Zur Aktivierung müssen Sie sich im lokalen Netzwerk in der Weboberfläche des Wechselrichters anmelden. Die relevante Option finden Sie unter Kommunikation / Solar API. Der Dialog warnt vor der Aktivierung, weil die Schnittstelle nicht durch ein Passwort abgesichert ist. Allzugroß sollte die Gefahr nicht sein, weil der Zugang ohnedies nur im lokalen Netzwerk möglich ist und weil die Schnittstelle ausschließlich Lesezugriffe vorsieht. Sie können den Wechselrichter über die Solar API also nicht steuern.
Als nächstes öffnen Sie in der HA-Weboberfläche die Seite Einstellungen / Geräte & Dienste und suchen dort nach der Integration Fronius (siehe auch hier). Im ersten Setup-Dialog müssen Sie lediglich die IP-Adresse des Wechselrichters angeben. Im zweiten Dialog werden alle erkannten Komponenten aufgelistet und Sie können diese einem Bereich zuordnen.
Bei meinen Tests standen anschließend über 60 neue Entitäten (Sensoren) für alle erdenklichen Betriebswerte des Wechselrichters, des damit verbundenen Smartmeters sowie des Stromspeichers zur Auswahl. Viele davon werden automatisch im Default-Dashboard angezeigt und machen dieses vollkommen unübersichtlich.
Energieansicht
Der Zweck der Fronius-Integration ist weniger die Anzeige diverser einzelner Betriebswerte. Vielmehr sollen die Energieflüssen in einer eigenen Energieansicht dargestellt werden. Diese Ansicht wertet die Wechselrichterdaten aus und fasst zusammen, welche Energiemengen im Verlauf eines Tags, einer Woche oder eines Monats wohin fließen. Die Ansicht differenziert zwischen dem Energiebezug aus dem Netz bzw. aus den PV-Modulen und berücksichtigt bei richtiger Konfiguration auch den Stromfluss in den bzw. aus dem integrierten Stromspeicher. Sofern Sie eine Gasheizung mit Mengenmessung verfügen, können Sie auch diese in die Energieansicht integrieren.
Die Konfiguration der Energieansicht hat sich aber als ausgesprochen schwierig erwiesen. Auf Anhieb gelang nur das Setup des Moduls Stromnetz. Damit zeigt die Energieansicht nur an, wie viel Strom Sie aus dem Netz beziehen bzw. welche Mengen Sie dort einspeisen. Die Fronius-Integration stellt die dafür Daten in Form zweier Sensoren direkt zur Verfügung:
Aus dem Netz bezogene Energie: sensor.smart_meter_ts_65a_3_bezogene_wirkenergie
In das Netz eingespeiste Energie: sensor.smart_meter_ts_65a_3_eingespeiste_wirkenergie
Je nachdem, welchen Wechselrichter und welche dazu passende Integration Sie verwenden, werden die Sensoren bei Ihnen andere Namen haben. In den Auswahllisten zur Stromnetz-Konfiguration können Sie nur Sensoren
auswählen, die Energie ausdrücken. Zulässige Einheiten für derartige Sensoren sind unter anderem Wh (Wattstunden), kWh oder MWh.
Code zur Bildung von drei Riemann-Integralen
Eine ebenso einfache Konfiguration der Module Sonnenkollektoren und Batteriespeicher zu Hause scheitert daran, dass die Fronius-Integration zwar aktuelle Leistungswerte für die Produktion durch die PV-Module und den Stromfluss in den bzw. aus dem Wechselrichter zur Verfügung stellt (Einheit jeweils Watt), dass es aber keine kumulierten Werte gibt, welche Energiemengen seit dem Einschalten der Anlage geflossen sind (Einheit Wattstunden oder Kilowattstunden). Im Internet gibt es eine Anleitung, wie dieses Problem behoben werden kann:
Die Grundidee besteht darin, dass Sie eigenen Code in eine YAML-Konfigurationsdatei von Home Assistant einbauen. Gemäß dieser Anweisungen werden mit einem sogenannten Riemann-Integral die Leistungsdaten in Energiemengen umrechnet. Dabei wird regelmäßig die gerade aktuelle Leistung mit der zuletzt vergangenen Zeitspanne multipliziert. Diese Produkte (Energiemengen) werden summiert (method: left). Das Ergebnis sind drei neue Sensoren (Entitäten), deren Name sich aus den title-Attributen im zweiten Teil des Listings ergeben:
Die Umsetzung der Anleitung hat sich insofern schwierig erwiesen, als die in der ersten Hälfte des Listungs verwendeten Sensoren aus der Fronius-Integration bei meiner Anlage ganz andere Namen hatten als in der Anleitung. Unter den ca. 60 Sensoren war es nicht ganz leicht, die richtigen Namen herauszufinden. Wichtig ist auch die Einstellung device_class: power! Die in einigen Internet-Anleitungen enthaltene Zeile device_class: energy ist falsch.
Der template-Teil des Listings ist notwendig, weil der Sensor solarnet_leistung_von_der_batterie je nach Vorzeichen die Lade- bzw. Entladeleistung enthält und daher getrennt summiert werden muss. Außerdem kommt es vor, dass die Fronius-Integration einzelne Werte gar nicht übermittelt, wenn sie gerade 0 sind (daher die Angabe eines Default-Werts).
Der zweite Teil des Listungs führt die Summenberechnung durch (method: left) und skaliert die Ergebnisse um den Faktor 1000. Aus 1000 Wh wird mit unit_prefix: k also 1 kWh.
Bevor Sie den Code in configuration.yaml einbauen können, müssen Sie einen Editor als Add-on installieren (Einstellungen / Add-ons, Add-on-Store öffnen, dort den File editor auswählen).
# in die Datei /homeassistant/configuration.yaml einbauen
...
template:
- sensor:
- name: "Battery Power Charging"
unit_of_measurement: W
device_class: power
state: "{{ max(0, 0 - states('sensor.solarnet_leistung_von_der_batterie') | float(default=0)) }}"
- name: "Battery Power Discharging"
unit_of_measurement: W
device_class: power
state: "{{ max(0, states('sensor.solarnet_leistung_von_der_batterie') | float(default=0)) }}"
- name: "Power Photovoltaics"
unit_of_measurement: W
device_class: power
state: "{{ states('sensor.solarnet_pv_leistung') | float(default=0) }}"
sensor:
- platform: integration
source: sensor.battery_power_charging
name: "Total Battery Energy Charged"
unique_id: 'myuuid_1234'
unit_prefix: k
method: left
- platform: integration
source: sensor.battery_power_discharging
name: "Total Battery Energy Discharged"
unique_id: 'myuuid_1235'
unit_prefix: k
method: left
- platform: integration
source: sensor.power_photovoltaics
name: "Total Photovoltaics Energy"
unique_id: 'myuuid_1236'
unit_prefix: k
method: left
Damit die neuen Einstellungen wirksam werden, starten Sie den Home Assistant im Dialogblatt Einstellungen / System neu. Anschließend sollte es möglich sein, auch die Module Sonnenkollektoren und Batteriespeicher zu Hause richtig zu konfigurieren. (Bei meinen Experimenten hat es einen ganzen Tag gedauert hat, bis endlich alles zufriedenstellend funktionierte. Zwischenzeitlich habe ich zur Fehlersuche Einstellungen / System / Protokolle genutzt und musste unter Entwicklerwerkzeuge / Statistik zuvor aufgezeichnete Daten von falsch konfigurierten Sensoren wieder löschen.) Der Lohn dieser Art zeigt sich im Bild aus der Artikeleinleitung.
Ein MQTT-Broker ist die Schnittstelle zwischen vielen IoT-Sensoren und Geräten, die Sensordaten auswerten oder Aktoren steuern. Das MQTT-Protokoll ist offen und sehr weit verbreitet. Es findet in der Industrie Anwendungen, ist aber auch in Smart Homes ist MQTT weit verbreitet. MQTT ist ein sehr schlankes und schnelles Protokoll. Es wird in Anwendungen mit niedriger Bandbreite gerne angewendet.
MQTT funktioniert, grob gesagt, folgendermaßen: IoT-Geräte können Nachrichten versenden, die von anderen IoT-Geräten empfangen werden. Die Vermittlungsstelle ist ein sogenannter MQTT-Broker. Dieser empfängt die Nachrichten von den Clients. Gleichzeitig können diese Nachrichten von anderen Clients abonniert werden. Die Nachrichten werden in sog. Topics eingestuft, die hierarchisch angeordnet sind, z.B. Wohnzimmer/Klima/Luftfeuchtigkeit.
Home Assistant, oder ein anderer Client, kann diesen Topic abonnieren und den Nachrichteninhalt („Payload„) auswerten (z.B. 65%).
Home Assistant OS vs. Home Assistant Container
In Home Assistant OS und Supervisor gibt es ein Addon, das einen MQTT-Broker installiert. Das ist sehr einfach, komfortabel und funktioniert wohl recht zurverlässig. In den Installationsarten Home Assistant Container und Core gibt es diese Möglichkeit nicht. Hier muss man manuell einen MQTT-Broker aufsetzen.
In diesem Artikel beschäftige ich mich damit, wie man den MQTT-Brocker Mosquitto über Docker installiert. Anschließend zeige ich, wie man die Konfigurationsdatei gestaltet und eine Verbindung zu Home Assistant herstellt. Das Ergebnis ist dann ungefähr so, als hätte man das Addon installiert. Los gehts!
Schritt für Schritt: MQTT-Broker Mosquitto mit Docker installieren
Als MQTT-Broker verwende ich die weit verbreitete Software Mosquitto von Eclipse. Dieser wird auch von Home Assistant bevorzugt und ist derjenige Broker, den das Addon installieren würde. Für diese Anleitung wird vorausgesetzt, dass Docker bereits installiert ist und eine SSH-Verbindung zum Server hergestellt werden kann.
Schritt 1: Zunächst erstellen wir ein paar Ordner, die wir später benötigen. Mosquitto wird später so konfiguriert, dass in diese Ordner alle wichtigen Dateien abgelegt werden. Dadurch kann man auf dem Filesystem des Servers Mosquitto konfigurieren und beobachten.
-p 1883:1883 Der genannte Port ist die Standardeinstellung für MQTT. Alles was auf diesen Port am Server ankommt, wird in den Mosquitto-Container geleitet.
-p 9001:9001 Über diesen Port laufen die Websocket-Anwendungen. Falls das nicht benötigt wird, kann man das weg lassen
name mosquitto Über diesen kurzen Namen können wir den Docker-Container steuern
-v <filesystem-Pfad>:<Container-Pfad> Die in Schritt 1 erstellten Ordner werden in den Container eingebunden
Wer lieber Docker Compose verwendet, trägt diesen Eintrag in seine *.yaml ein:
Schritt 5: Checken, ob der Container ordnungsgemäß läuft. In der folgenden Liste sollte eine Zeile mit dem Mosquitto-Docker auftauchen. Dieser sollte außerdem „up“ sein. Falls nicht, nochmal versuchen den Container zu starten und kontrollieren, ob er läuft.
$ docker container ls -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
xxxxxxxxx eclipse-mosquitto "/init" 3 minutes ago Up 2 minutes [...] mosquitto
Schritt 6: Sehr gut, der Container läuft. Es wird dringend empfohlen, den MQTT-Broker so abzusichern, dass nur angemeldete User darauf zugreifen können. Das ist ja schon in Schritt 2 in die Konfigurationsdatei geschrieben worden. Mit dem folgenden Befehl melden wir uns in der Shell innerhalb des Containers an und erstellen einen Benutzer. In diesem Beispiel mosquitto. Im Anschluss an diesen Befehl wird man zweimal gebeten, das Passwort für den User festzulegen. Ist das geschafft, läuft der MQTT-Broker auf dem Server. Herzlichen Glückwunsch!
$ docker exec -it sh // öffnet die Shell innerhalb des Dockers
mosquitto_passwd -c /mosquitto/config/mosquitto.passwd mosquitto
Optional Schritt 7: Den MQTT-Broker bindet man in Home Assistant ein, indem man auf Einstellungen → Geräte und Dienste → + Integration hinzufügen klickt. Im Suchfenster nach „MQTT“ suchen und die Zugangsdaten eingeben. Die Server-Adresse findet man übrigens am schnellsten über ifconfig heraus.
Wenn man sich ein Smart Home aufbaut, möchte man aus verschiedenen Gründen Temperaturen messen. In meinem Fall möchte ich im Heizungsraum die Temperaturen an den Wasserrohren, sowie im Warmwasserspeicher aufzeichnen. Eine einfache und kostengünstige Lösung ist es, das mit einem ESP8266 und dem DS18B20 Temperatursensor umzusetzen. Mit der Software ESPHome ist das auch schnell eingerichtet. Im Folgenden zeige ich, wie man das macht.
ESP8266 und DS18B20 verdrahten
Für dieses Beispiel verwende ich einen ESP8266 Wemos D1 Mini mit drei DS18B20 Temperatursensoren. Sie werden nach folgendem Schema verdrahtet. Das einzige zusätzliche Bauteil ist ein 4,7 kOhm Widerstand, der zwischen den Signal-Pin und VCC gelötet wird.
Der Vorteil von den DS18B20 ist, dass man sehr viele von ihnen parallel betreiben kann. Wenn die Schaltung einmal geschafft ist, kann man weitere Sensoren einfach anschließen. Das ist der Grund, warum ich schraubbare Kontaktklemmen verwendet habe: Dadurch kann ich mit wenig Aufwand neue Sensoren anschließen.
DS18B20: Adresse herausfinden
Dieser Temperatursensor arbeitet mit dem 1-Wire-Protokoll. Um jeden Sensor eindeutig ansprechen zu können, ist die Adresse des Sensors notwendig. Die kann man leider nicht am Gehäuse ablesen, sondern man muss sie via Software erfragen. Wir nutzen das gleich, um unsere Verdrahtung zu überprüfen!
Die Adresse der Sensoren findet man ebenfalls mit ESPHome heraus, indem man ein sehr minimalistisches Programm aufspielt. Wie schon beim Auslesen des Gaszählers startet man mit
esphome wizard heizungstemperatur.yaml
und beantwortet dem Wizard wahrheitsgemäß die 4 Fragen. Die entstandene heizungstemperatur.yaml öffnet man mit einem Editor und fügt unten die folgenden Zeilen hinzu:
# Example configuration entry
dallas:
- pin: GPIO2
Mittels des folgenden Befehls kompiliert man die Datei und flasht sie auf den ESP8266 (siehe Artikel über den Gaszähler).
esphome run heizungstemperatur.yaml
Der folgende Befehl öffnet die Logdatei des Controllers:
esphome logs heizungstemperatur.yaml
Dort werden die Adressen der angeschlossenen Sensoren angezeigt. Kleiner Tipp: Wenn man immer nur einen Sensor anschließt, behält man den Überblick!
In der Logdatei sieht man (in der letzten Zeile) die Adresse des Sensors. Diesen notiert man sich.
ESPHome für Temperaturmessung flashen
Wenn man nun alle Adressen der Sensoren herausgefunden und notiert hat, kann man das den ESP8266 wie folgt konfigurieren. Den Code fügt man an die bereits erzeugte Datei aus dem Wizard an.
Da mittlerweile der Chip schon die ESPHome-Software aufgespielt hat, kann man bereits jetzt kabellos den neuen Programmcode übertragen. Bei ESPHome nennt sich diese Technik „Over the air“, kurz OTA. Der PC und der ESP8266-Chip müssen sich nur im gleichen Netzwerk befinden.
esphome run heizungstemperatur.yaml
Integration der Temperatursensoren in Home Assistant
Jetzt fehlt nur noch die Integration in den Home Assistant. Glücklicherweise arbeiten die beiden Systeme sehr gut miteinander. Man navigiert im Home Assistant auf Einstellungen, Geräte& Dienste und fügt über das Plus unten rechts eine neue Integration hinzu. Dort sucht man nach „ESPHome“ und gibt im folgenden Fenster die IP-Adresse ein. Wichtig: hierfür muss die API aktiviert sein (das ist eine der Fragen des esphome-Wizards).
Zu einem Smart Home gehört es fast selbstverständlich, dass der Verbrauch von Energie aufgezeichnet wird. Der Stromzähler ist eine der wesentlichen Energiezählern im Haushalt, auch der Gaszähler ist sehr wichtig. Vor allem in Haushalten, in denen der primäre Energieträger Erdgas ist, ist der Gasverbrauch essenziell und wird im Smart Home auch optimiert. Das ist, zumindest für meine Begriffe, eine der wesentlichen Aufgaben des Smart Homes.
Das Schöne an den Gaszähler ist es, dass sie sich in der Regel sehr einfach auslesen lassen. Es ist keine komplizierten und teuren Geräte dafür notwendig. Bei den meisten Gaszählern reicht nämlich ein einfacher Reed-Kontakt aus, die es für einige Cent bei Ebay oder anderen Shops zu kaufen gibt. Als Intelligenz wird der sehr vielseitige ESP8266 verwendet. Dieser ist sehr energiesparend, hat integriertes WLAN, lässt sich verhältnismäßig einfach einrichten und kostet ebenfalls nur sehr wenig Geld.
Wenn der Gaszähler eine Aufschrift wie „1 im = 0,01m³“ trägt, lässt er sich mit wenig Aufwand digitalisieren. Ein Reed-Schalter könnte bereits genügen, um den Gaszähler ins Smart Home einzubinden.
Hardware: ESP8266 und Reed-Kontakt verlöten
Die Einkaufsliste für diesen Sensor:
ESP8266, beispielsweise den Wemos D1 Mini
Reed-Kontakt
optional: 5V Netzteil
optional: Schrumpfschlauchsortiment
Für einen geübten Maker ist diese Aufgabe im Handumdrehen erledigt. Für nicht geübte Maker ist es das perfekte Einsteigerprojekt. Es sind nur sehr wenige Lötstellen zu setzen und man kann kaum etwas falsch machen. Beim ESP8266, in meinem Fall ein Wemos D1 mini, müssen nur die beiden Pinleisten angelötet werden. Für Minimalisten würde sogar je ein Pin bei G (Ground) und D1 (GPIO5) reichen. An diese Pins gehören jeweils die Kabel, idealerweise Litzen 0,15mm², an deren Ende der Reed-Kontakt gehört. Bei diesem Schalter muss man keine Richtung beachten, man kann ich nicht falsch herum anlöten. Das fertige Produkt sieht dann so aus. Ich habe noch versucht, die Lötstellen mit Schrumpfschlauch zu verschönern. Das ist optional.
Update (02.05.2022) Weiterhin habe ich eine optionale LED zur Visualisierung des Signals eingebracht. Diese blinkt immer dann, wenn der Reed-Kontakt schaltet. Das ist vor allem dann sehr nützlich, wenn man den Reed-Schalter am Gaszähler anbringt. Die LED ist eine Hilfe, sie ist aber nicht zwingend nötig. Ihren Vorwiderstand kann man über Online-Tools berechnen, bei mir waren es 220 Ohm.
Der Schaltplan mit optionaler LEDESP8266 an der Pinleiste mit einem Reed-Schalter verlötet. Der Reed-Schalter geht auf Pin G und Pin D1
ESPHome auf ESP8266 installieren unter Windows 10
Unter Windows 10 lässt sich über den „Microsoft Store“ Ubuntu installieren. Das ist der kleine Umweg, den ich häufig gehe, um ein fast vollständiges Linux unter Windows 10 zum laufen zu bringen. Dass es leider nicht vollständig ist, sieht man den nun folgenden, etwas umständlichen Herangehensweise, wie man ESPHome auf dem ESP8266 installiert.
Wer ein vollständiges hass.io bzw. Home Assistant hat, kann das übrigens über den Addon-Store mit dem Add-on „ESPHome“ deutlich beschleunigen. Da ich aber, wie bereits beschrieben, Home Assistant als Container laufen habe, ist für mich der Umweg notwendig.
Man startet Ubuntu unter Windows und gelangt in das Terminal. Dort installiert man sich (falls noch nicht geschehen) Python 3 und das nötige Paket „esphome“ aus dem Python-Repsitory. Anschließend prüft man, ob die Installation geklappt hat, indem man sich die Versionsnummer ausgeben lässt.
Der Einfachheit halber empfehle ich, den Wizard von ESPHome zu verwenden. Er wird benutzt, um die *.yaml zu erstellen. Genau wie bei Home Assistant ist sie dafür da, den Controller zu konfigurieren. Der Wizard zeigt einem glücklicherweise gleich alle möglichen Alternativen auf, die man eingeben kann. Beantwortet also wahrheitsgemäß die 4 Fragen den Wizards und wir erhalten eine Konfigurationsdatei mit dem angegebenen Namen. Ich habe hier willkürlich gaszaehler.yaml gewählt.
Die nun folgende Datei sieht dann beispielsweise so aus:
esphome:
name: gaszaehler
esp8266:
board: d1_mini
# Enable logging
logger:
# Enable Home Assistant API
api:
password: "1234"
ota:
password: "1234"
wifi:
ssid: "hier die Wifi-SSID eintragen"
password: "hier das Wifi Passwort eintragen"
manual_ip:
static_ip: "auf Wunsch"
gateway: "IP-Adresse des Gateways"
subnet: "Subnet Maske"
# Enable fallback hotspot (captive portal) in case wifi connection fails
ap:
ssid: "Gaszaehler Fallback Hotspot"
password: "hier steht automatisch ein Passwort"
captive_portal:
Das Fallback-Wifi wird gebraucht, falls der Sensor das eigentliche WLAN nicht erreichen kann. Dann baut der ESP8266 eigenständig ein WLAN auf, über das er sich konfigurieren lässt.
Update (02.05.2022) Vor diesem Update habe ich den Pulse_counter von ESPHome verwendet. Dieser liefert leider keine zuverlässigen Werte. Gleiches gilt für den pulse_meter, der eigentlich besser sein sollte. Stattdessen bin ich nach einiger Tüftelei wieder bei dem binary_sensor herausgekommen, der wunderbar funktioniert. Zusätzlich ist eine LED auf GPIO0 angebracht, die schaltet, sobald der Reed-Schalter zieht. Damit könnt ihr live am Gerät sehen, ob ein Puls anliegt. Sie ist nur eine Hilfe und nicht zwingend erforderlich.
globals:
- id: total_pulses
type: int
restore_value: false
initial_value: '0' # hier kann der Gaszählerstand initialisiert werden
binary_sensor:
- platform: gpio
id: internal_pulse_counter
pin:
number: GPIO5
mode: INPUT_PULLUP
name: "Live-Impuls"
filters:
- delayed_on: 10ms
on_press:
then:
- lambda: id(total_pulses) += 1;
- output.turn_off: led # optional: für eine LED, die den Gaszählerpuls visualisiert
on_release:
then:
- output.turn_on: led # optional: für eine LED, die den Gaszählerpuls visualisiert
sensor:
- platform: template
name: "Gasverbrauch"
device_class: gas
unit_of_measurement: "m³"
state_class: "total_increasing"
icon: "mdi:fire"
accuracy_decimals: 2
lambda: |-
return id(total_pulses) * 0.01;
# Optional: Diese LED soll blinken, sobald ein Signal vom Gaszähler erkannt wird
output:
- platform: gpio
pin: GPIO0
id: 'led'
Fertig mit der Konfiguration. Wir speichern mit Strg + O und schließen Nano mit Strg + X
Mit dem folgenden Befehl wird der Code für den ESP8266 kompiliert. Ich habe es leider nicht geschafft, ihn direkt per USB-Kabel auf meinen Controller zu bekommen. Daher bin ich einen Umweg gegangen.
$ esphome run gaszaehler.yaml
Das endet mit einer Fehlermeldung (connection failed bad indicator errno=11), dass der Code nicht auf den Controller gebracht werden konnte. Stattdessen kopieren wir den Code auf das Laufwerk C: unter Windows und arbeiten von dort aus weiter (sorry Leute!!).
Mittels ESPHome-Flasher, den es auch für Windows gibt und der nicht installiert werden muss (!!) geht es weiter. Die eben kopierte Datei auswählen, den ESP8266 mit USB am PC anstöpseln und den entsprechenden COM-Port auswählen (bei mir wurde nur einer angezeigt). Bestätigen, und warten bis es fertig ist.
ESPHome in Home Assistant installieren
Mit der Entität „ESPHome“ kann der Sensor in den Home Assistant eingebunden werden. Das geht sehr fix, es muss nur die IP-Adresse und das festgelegte Passwort eingegeben werden. Damit er auch korrekt als Energiequelle erkannt wird, muss man noch folgende Zeilen in die configuration.yaml anfügen, besser noch, in die sensor.yaml
Update (15.04.2022): Manchmal fällt der ESP kurzzeitig aus, was den Gasverbrauch kurzfristig auf 0 m³ setzt. Sobald er wieder da ist, gibt es einen unlogischen Peak in der Statistik. Dieser wird über die kleine IF-Schleife herausgefiltert.
- platform: template
sensors:
# Gaszähler, kommend von ESPHome, aufbereiten für Energy
gasincubicmeter:
value_template: >
{% if states('sensor.gasverbrauch') | float == 0 %}
{{ states('sensor.gasincubicmeter') }}
{% else %}
{{ states('sensor.gasverbrauch') | float }}
{% endif %}
unit_of_measurement: m³
device_class: gas
attribute_templates:
state_class: total_increasing
Nach einem Neustart des Servers klickt man im Home Assistant auf „Einstellungen“, „Energie“ und klickt auf den Gaszähler. Dort taucht nun die neue Entität gasincubicmeter auf und kann ausgewählt werden.
In Home Assistant kann über Einstellungen → Energie eine neue Gasquelle hinzugefügt werdenDer Gasverbrauch wird auf dem Energie-Dashboard von Home Assistant angezeigt
Reed-Schalter am Gaszähler positionieren
Wer Zugriff auf einen 3D-Drucker hat, sollte sich bei Thingiverse mal umsehen, ob dort ein Halter für seinen Gaszähler vorhanden ist. Die Chance dort, oder woanders, einen zu finden, halte ich für sehr hoch. Andernfalls kann man mit etwas Geschick und gutem Klebeband den Schalter direkt am Gaszähler montieren. Er muss in der vorgesehenen Kerbe möglichst genau unter der letzten Ziffer positioniert werden. Wer darauf achtet, wird bemerken, dass die letzte drehende Ziffer einen kleinen Magneten hat. Genau darunter muss der Reed-Schalter geklebt werden.