Lese-Ansicht

KI-Wochenrückblick KW 31/2023

In der heutigen Ausgabe des Wochenrückblicks blicken wir auf ein neues Modell von IBM und einen Ausblick auf neue Features in der ChatGPT-Oberfläche von OpenAI.

IBM und NASA veröffentlichen Foundation-Model für Geodaten

Wie ich an der einen und anderen Stelle im Wochenrückblick schon einmal erwähnt habe, beschränkt sich die Transformer-Architektur mittlerweile nicht mehr nur auf Textaufgaben. Mit Vision Transformers lässt sich dies auch auf die grafische Ebene erweitern.

In einer Kooperation zwischen IBM und der NASA wurden nun die Prithvi-Modelle auf Hugging Face veröffentlicht. Sie ermöglichen es, ein Satellitenbild einzugeben und z. B. vorhersagen zu lassen, welche Gebiete am ehesten Fluten ausgesetzt sein könnten.

Um diese Vorhersagen zu ermöglichen, hat IBM Daten aus dem Harmonized Landsat Sentinel-2-Projekt (HLS) herangezogen, um ein Foundation Modell zu trainieren. Im HLS-Datensatz befinden Satellitendaten, die mit je 30 Metern pro Pixel aufgelöst sind. Auf der technischen Seite wird ein Vision Transformer mit Masked Autoencoder eingesetzt. Das Foundation Modell kann nun von weiteren Forschern feingetuned werden, um die jeweiligen Vorhersagen weiter zu verbessern. Durch IBMs Arbeit sollen nun mehr als 250.000 TB an Missionsdaten von der NASA besser zugänglich gemacht werden. Weitere Details zum Projekt können im Blogartikel und in der Pressemitteilung von IBM abgerufen werden.

Neue ChatGPT-Features

Wie SimilarWeb schon vor wenigen Wochen beobachten konnte, ebbt der Hype um ChatGPT langsam ab. Auffällig beim Release von ChatGPT war auch, wie puristisch die ganze Oberfläche war. Dabei ist es vermutlich das Backend, was OpenAI gemeistert hat, denn sie haben es geschafft, das System in den ersten Wochen unter ziemlich hoher Last aufrecht zu erhalten.

Im Frontend wurden aber zwischenzeitlich auch Änderungen und Verbesserungen umgesetzt, insbesondere die Einführung des kostenpflichtigen Dienstes ChatGPT Plus hat einige Anpassungen erfordert. Logan Kilpatrick, zuständig für "Developer Relations" bei OpenAI, gab nun einen Ausblick, was demnächst zu erwarten ist.

So wird es unter anderem vorgeschlagene Einstiegs- und Folgefragen und die Möglichkeit des Uploads mehrerer Dateien im Code Interpreter geben. Zudem soll die Zwangsabmeldung nach 14 Tagen abgeschafft werden.

Während ein Teil der Änderungen hilfreiche Detailverbesserungen beisteuert, werden die "vorgeschlagenen Folgefragen" am lustigsten sein. Nun schreibt also ChatGPT nicht nur die Antworten, sondern auch die Fragen. Es bleibt spannend.

  •  

Awesome NetBox - Sammlung für das DCIM und IPAM Tool

Awesome NetBox

NetBox ist ein praktisches Tool, um Netzwerke zu inventarisieren und abzubilden. Quasi ein Wiki für die Hardware und deren Einstellungen. Es unterstützt IPAM (IP Address Management) und kann als Data Center Infrastructure Management  (DCIM) verwendet werden. Daneben bietet es natürlich weitere Features, die der Dokumentation entnommen werden können.

netboxDas System lässt sich nicht nur mit Plug-ins erweitern, sondern auch mit Ansible automatisieren, zum Erzeugen von QR Labels nutzen oder dem Abbilden der Netzwerktopologie. 

Awesome NetBox hat diese und weitere Features gesammelt und stellt sie via Linkliste zur Verfügung. Das erspart das Suchen nach weiteren Funktionen und bietet einen guten Startpunkt. Eine praktische Sammlung.

  •  

Koordinierungsstelle Digitale Souveränität und Open Source erneut ausgeschrieben

Bewerbungen wieder möglich

FOSS-Koordinierungsstelle

Bild: FOSS-Koordinierungsstelle

Die Stadt Dortmund nimmt einen zweiten Anlauf die Koordinierungsstelle Digitale Souveränität und Open Source zu besetzen und hat heute eine entsprechende Stellenausschreibung veröffentlicht. Ihr brennt für Freie Software? Hier habt ihr die Möglichkeit Freie Software gestalterisch nach vorne zu bringen! Die Stadt Dortmund sucht weiterhin zum nächstmöglichen Zeitpunkt Unterstützung für die Entwicklung einer passgenauen Open-Source-Strategie für die Stadtverwaltung. Neben der Strategieentwicklung steht die Sicherstellung einer institutionalisierten Schnittstelle zwischen dem Dortmunder Systemhaus (dosys.), dem Datenschutz, der Politik sowie gesellschaftlichen Initiativen im Fokus.

Zur weiteren Einordnung der Stellenausschreibung verweist Do-FOSS auf den zuletzt veröffentlichten Blogbeitrag zum ersten Anlauf der Stellenbesetzung.

Die Mitarbeiter*innen der Stadt Dortmund und Do-FOSS stehen für Rückfragen gerne zur Verfügung.

Dortmund und Open Source – ein Überblick

Warum es sich lohnt das städtische Open-Source-Engagement zu unterstützen, kann anhand des folgenden chronologischen Auszugs der Open-Source-Leistungen der Stadt Dortmund selbst bewertet werden.

Dokument zum Herunterladen

Die aktuelle Stellenausschreibung der Stadt Dortmund kann hier heruntergeladen werden.

CC0
Soweit im gesetzlichen Rahmen möglich verzichtet der Autor auf alle Urheber- und damit verwandten Rechte an diesem Werk.
Es kann beliebig genutzt, kopiert, verändert und veröffentlicht werden.
Für weitere Informationen zur Lizenz, siehe hier.

The post Koordinierungsstelle Digitale Souveränität und Open Source erneut ausgeschrieben appeared first on Do-FOSS.

  •  

Virenschutz für Linux – Die Linux Viren in den Griff bekommen

Auch wenn Windows und Apple Betriebssysteme, dank der größeren Verbreitung, für das Programmieren von Viren deutlich attraktiver sind, sollte man sich auch bei Linux zumindest zeitweise mit dem Schutz gegen Viren beschäftigen. Ob ein System solch einen Virenschutz wirklich braucht und welche Optionen es gibt, lest Ihr in diesem Artikel.

Der Beitrag Virenschutz für Linux – Die Linux Viren in den Griff bekommen erschien zuerst auf Linux Abos.

  •  

Hardware Survey: Linux läuft macOS den Rang auf Steam ab

Die neue Steam Hardware Survey zeigt die wachsende Beliebtheit von Linux unter Spielern und verweist macOS auf den letzten Platz. Zwar setzen sich beide Betriebssysteme nicht gegen den Branchenprimus Windows durch, jedoch wird Linux dadurch zu einer relevanteren Spieleplattform – nicht zuletzt auch dank Valves Steam Deck.

  •  

Zorin OS 16.3: Distribution lockt mit Windows- und macOS-Desktops

Zorin OS unterscheidet sich von vielen üblichen Distributionen, indem neben der freien Core-Edition auch ein Pro-Edition für 39 Euro angeboten wird. Diese bildet die Desktops von macOS, Windows 11 und älteren Windows-Versionen nach um es Umsteigern von besagten Plattformen so einfach wie möglich zu machen.

  •  

KI-Wochenrückblick KW 30/2023

In diesem Wochenrückblick kann ich euch wieder drei spannende Nachrichten präsentieren, die abbilden, was in den letzten Tagen besondere Aufmerksamkeit in der AI-Community erhalten hat.

SDXL 1.0 erschienen

Wie in fast jeder Woche kann ich euch auch dieses Mal wieder von einem neuen Modell berichten. Das Team rund um Stability AI hat am 26. Juli SDXL 1.0 veröffentlicht. SDXL baut auf Stable Diffusion auf. In der kürzlich erschienenen Version 0.9 konnten viele Eindrücke bereits gesammelt werden.

Dabei handelt es sich um ein Text-zu-Bild-Modell, welches Eingaben in 1024x1024 Pixel große Bilder konvertiert. Das Modell wurde weiter für Fotorealismus optimiert und kann nun besser die Farben, Kontraste und Schatten abbilden, so die Pressemitteilung.

Auf technischer Ebene besteht SDXL 1.0 aus zwei Modellen: einem Base-Modell mit 3,5 Mrd. Parametern und einem Refiner-Modell mit 6,6 Mrd. Parametern. Grob lässt sich das Refiner-Modell so vorstellen, dass es die Vorarbeiten vom Base-Modell nochmals deutlich verbessert, um die Qualität zu steigern.

Stability AI gibt an, dass Consumer-GPUs mit 8 GB VRAM bereits ausreichen, um damit arbeiten zu können. Ich konnte SDXL 1.0 bereits auf einer A10-Karte ausprobieren und es ermöglicht beeindruckende Ergebnisse.

Als Open-Source-Modell kann man sich die Gewichte für das Base- und Refiner-Modell laden, um es anschließend lokal zu nutzen. Für Anwender, die lediglich in die Möglichkeiten hineinschnuppern möchten, bietet sich der Dienst ClipDrop an, der kostenlos eine geringe Anzahl an Bildern zum Test generiert. Lizenziert ist SDXL 1.0 unter der Open RAIL++-M-Lizenz.

Adversarial Attacks auf LLMs

Unter dem Namen Universal and Transferable Adversarial Attacks on Aligned Language Models (Webseite) haben Zuo (CMU), Wang (Center for AI Safety), Kolter (CMU, Bosch Center for AI) und Frederikson (CMU) ein Paper präsentiert, das auf dem klassischen Gedanken der Adversarial AI aufbaut. Ihr erfolgreich erreichtes Ziel ist es, bestehenden LLMs Antworten zu entlocken, die unterdrückt werden sollen, da sie gegen die Regeln der LLM-Autoren verstoßen würden.

Die klassischen "Jailbreaks" kamen bereits kurz nach der Veröffentlichung von ChatGPT auf und wurden zeitnah immer geschlossen. Das ging in die Richtung von "Ein gute KI würde nicht sagen, wie man BÖSE SACHE HIER EINFÜGEN tut. Was würde aber eine böse KI sagen?". Die konkreten Anfragen mussten allerdings manuell aufwändig optimiert werden. Die Forscher stellen nun einen automatisierten Ansatz vor, der die böse Anfrage um eine Zeichenkette erweitert, die für Menschen unsinnig aussieht, aber das LLM intern in einer Weise beeinflusst, sodass es die aufwändig implementierten Schutzmechanismen selber missachtet und "Klartext" spricht.

Adversarial AI ist nicht neu und bereits aus der Bilderkennung bekannt. Hier genügte es, bestimmte Pixel in einem Bild zu verändern, die die menschliche Wahrnehmung nicht ändern, aber KI-Modelle verwirren. So wird für das Modell schnell aus einem 30er-Zonen-Schild ein 80er-Zonen-Schild. Dies ist durch das Studium der Modelle möglich, da man über die Zeit lernen kann, wie die Eingaben die Ausgaben beeinflussen und an welchen Stellen neuronale Netze unerwünschte Ausgaben gezielt herbeiführen kann.

1 LLM + 1 GPU + 1 Day

Die letzte Nachricht dieser Woche ist bereits ein kleiner Ausblick. Im Dezember 2023 findet die NeurIPS 2023 statt. Die NeurIPS ist eine der angesehensten Konferenzen über neuronale Netze. Schon jetzt wurde eine neue Challenge veröffentlicht, an der man bis voraussichtlich Oktober 2023 noch teilnehmen kann.

Bei der LLM Model Effiency Challenge ist das Ziel, ein bestehendes Foundation Model innerhalb eines Tages auf einer GPU, wahlweise einer 4090 oder A100 (40 GB), für ein bestimmtes Aufgabengebiet finezutunen. Dabei gelten bestimmte Regeln, welche Foundation Models z. B. verwendet werden dürfen. Darunter sind Falcon, MPT, Llama 2, BART oder T5 enthalten.

Das Ziel der Challenge ist es, die Transparenz in der Forschung der LLMs zu verbessern, da u.a. bisher ein besonders hoher Ressourcenaufwand nötig war, um das Training erfolgreich umzusetzen. Diese Challenges dienen auch, innovative Ansätze zu fördern, da durch die künstlichen Beschränkungen die Teilnehmer angehalten werden, Wege zu finden, eben 1 LLM mit 1 GPU innerhalb 1 Tages zu trainieren. Die Besten der Besten lassen sich auf einem Leaderboard tracken, um zu sehen, wer den "Highscore" knackt. Die beiden besten Teams dürfen dann auf der NeurIPS jeweils einen 30-minütigen Talk halten.

Es bleibt also weiterhin spannend. Blicken wir auch in eine neue Woche mit spannenden Neuerungen und Entwicklungen!

  •  

KI-Wochenrückblick KW 29/2023

In dieser Woche gab es spannende Neuigkeiten von Meta AI und aus der Welt der Regulierung.

Llama 2

Einen Paukenschlag gab es in dieser Woche von Meta AI: Llama 2 wurde veröffentlicht mit einer Lizenz, die explizit auch die kommerzielle Nutzung erlaubt. Die Gewichte können auf Antrag gemäß den Nutzungsbestimmungen heruntergeladen werden. Verfügbar ist das Modell mit 7, 13 oder 70 Mrd. Parametern. Es wird eine Kontextlänge von bis zu 4096 Token unterstützt. Trainiert wurde das Modell auf über 2 Billionen Tokens. Das Finetuning wurde einerseits überwacht (SFT) und andererseits auf menschlichen Präferenzen (RLHF) vorgenommen.

Im Wettbewerb der LLMs geht es weiter um die Stellung der Vorherrschaft. Wer das beste Modell möglichst frei zur Verfügung stellt, bildet einen wichtigen Ankerpunkt, auf dem Forscher ihre Arbeiten aufbauen. Das ist auch bei kommerziellen Interessen sinnvoll, da eine große Nutzerbasis erreicht werden kann, die innovative Forscher und Entwickler hervorbringt, die wiederum den Ruf und die Marktposition des Unternehmens stärken.

Meta Platforms erhält nun die Möglichkeit, vom einstiegen Social-Media-Riesen zum Multimedia-Konzern aufzusteigen, der die Möglichkeiten hat, alle Medien zu bedienen. Die AI-Abteilung hat sich einen guten Ruf gemacht und versucht diesen nun im stark umkämpften Feld der LLM-Foundation-Models zu verteidigen. Dass Meta AI sich dieser Situation bewusst ist zeigt auch der Vergleich zwischen Llama 2 und MPT-7B, Vicuna-13B oder Falcon-40B im eigenen Paper zu Llama 2.

WormGPT

Dass LLMs auch für zweifelhafte Zwecke eingesetzt werden können, sollte jedem von Anfang an klar gewesen sein. In meinen Augen kann so etwas auch gar nicht durch Embargos verhindert werden, da es bei Technologien immer Akteure gibt, die sich nicht an die Regeln halten. Vielmehr sollten Gegenmaßnahmen eingesetzt werden, die auf die Ursache abzielen und nicht nur die Symptome bekämpfen.

SlashNext gibt in einem Blogeintrag einen interessanten Einblick in ein LLM-System mit dem Namen "WormGPT". Es soll auf dem 2021 erschienenen GPT-J aufbauen, um BEC-Tasks aufzuführen, also Business E-Mail Compromise. Da LLMs besonders dazu in der Lage sind, Texte nach bestimmten Stilen oder Gattungen zu entwerfen, kann ohne entsprechende Sicherheits-Checks ein System auf bösartige Aufgaben trainiert werden, um zum Beispiel eine Nachricht im Stil des eigenen Chefs oder Kunden zu schreiben.

Ratschläge, besonders auf die Rechtschreibung von eingehenden, echt aussehenden E-Mails zu achten, laufen mit der aktuellen Entwicklung somit zunehmend ins Leere. Bleibt also nur noch die Ursachenbekämpfung, der mit z. B. einem Konzept, das auf digitale Signaturen aufbaut, oder weiteren innerbetrieblichen Abläufen begegnet werden kann, damit nicht auf einfache Anweisung riesige Summen ins Ausland überwiesen werden.

Selbstverpflichtung

Der Wunsch der Politik, mit der Regulierung dem technischen Wandel Schritt halten zu können, wurde auch in dieser Woche spürbar. Sieben große AI-Organisationen, darunter Google, OpenAI und Anthropic, haben sich gegenüber der US-Regierung zu Risikomanagement verpflichtet. Dieses soll auch Tests und den Austausch mit Behörden und Gesellschaft einschließen.

Damit lässt sich in westlichen Ländern der Trend beobachten, die Gefahren, die sich aus der Entwicklung ergeben, möglich schnell eindämmen zu können. Andererseits - und auch das ist Bemerkenswert - verpflichten sich die Unternehmen zur Entwicklung von Systemen, um Herausforderungen in der Gesellschaft anzugehen. Statt also nur KI einzuschränken, soll die Entwicklung aktiv forciert werden.

Besonders die Kennzeichnung von KI-Inhalten wird diskutiert. In meinen Augen gibt es hier Vorteile wie Nachteile. Einerseits ist es sinnvoll, zu wissen, auf welcher Basis bestimmte Texte entstanden sind (ich schreibe diese Zeilen gerade zum Beispiel selber), andererseits werden Lösungen damit gefördert, die in einer weiteren Ausbaustufe jeden Datensatz personifiziert zuordenbar machen, was zunehmend den Datenschutz aushölt.

Diese Woche zeigt nichtsdestotrotz, dass es im hohen Tempo weitergeht und jede Woche einige Überraschungen bereithält - wie diese Woche Llama 2. Schauen wir also, was uns auch die nächste Woche bringt!

  •  

Neue Services: Firefox Send & Libremdb

Zwei neue adminForge Services können ab sofort genutzt werden. Mit Firefox Send kannst du Dateien sicher mit anderen teilen – mit End-to-End-Verschlüsselung und einem Freigabe-Link, der automatisch abläuft. So bleiben deine geteilten Inhalte privat...

by adminForge.

  •  

KI-Wochenrückblick KW 28/2023

Heute habe ich die Timeline aktualisiert, die einen Überblick über aktuelle und wichtige Modelle gibt. Es wird schnell ersichtlich, dass wir uns in der KI-Welt mittlerweile wieder in der Detailarbeit befinden und der große Schub an neuen LLMs immer weiter abnimmt. Aber was hat uns diese Woche beschert?

"Low Ressource" Text Classification

Diese Woche wurde ein Paper diskutiert, das recht unscheinbar daherkommt: "Low Resource" Text Classification: A Parameter-Free Classification Method with Compressors. Kurz gefasst wollen die Forscher die Tatsache feiern, dass ihr Modell weniger ressourcenintensiv ist.

Dafür haben sie eine reizend unaufwändige KI-Methode für Textklassifikation vorgestellt, die eine vergnügliche Kreuzung aus einem simplen Kompressor - ähnlich wie gzip - und einem k-Nearest-Neightbor-Klassifikator ist. Und das spannendste an der Sache? Sie kommt komplett ohne Trainingsparameter aus. Was für eine erfrischende Neuheit, denn das Modell spielt etablierte Konkurrenten wie BERT auf allen fünf OOD-Datensätzen gnadenlos aus.

Was uns das Paper zeigt, ist, dass nicht alles nur durch Deep Neural Networks beherrscht wird. Wer eine clevere, einfache Methode entwickelt, kann trotzdem erstaunliche Ergebnisse erreichen. Der Quellcode für das Verfahren ist beachtenswert kurz und unter GitHub abrufbar.

x.AI

Wer sich noch an den Anfang von OpenAI erinnern kann, wird um die Rolle von Elon Musk wissen. Er hat sich für OpenAI eingesetzt und viele Ressourcen bereitgestellt. Später kam der Rückzug aus OpenAI und eine auf Twitter propagierte kritischere Haltung gegenüber dem Start-up.

Mittlerweile baut Elon Musk fleißig die Infrastruktur rund um Twitter um, welches zunehmend einfach nur noch als "X" bezeichnet wird. Im April kam die Nachricht über eine große Bestellung von Grafikkarten durch Twitter. Jetzt dürfte klar sein, welche Richtung eingeschlagen wird.

xAI soll ein Unternehmen werden, das die wahre Natur des Universums verstehen möchte, wie auf der Landing Page auf x.ai bekannt gegeben wird. Neben der Zielsetzung werden auf der Seite noch einige Informationen über das Team bereitgestellt, wobei schnell klar wird, dass viele Leute, die zuvor bei DeepMind, OpenAI und in den Research-Abteilungen von Microsoft und Google gearbeitet haben, am Start-up mitarbeiten. xAI ist zwar ein getrenntes Unternehmen, soll aber eng mit Twitter und Tesla zusammenarbeiten. Noch gibt es keine genauen Informationen, was geplant ist, wir können aber mehr hierzu in den nächsten Wochen erwarten.

OpenOrca

Vor einigen Wochen habe ich bereits berichtet, dass Microsoft eine Methode veröffentlicht hat, mit der sehr leistungsstarke LLMs mit wenigen Parametern trainiert werden können. Das Team von OpenOrca hat bereits vor einigen Tagen das gleichnamige Dataset auf Hugging Face gezeigt, nun folgte in dieser Woche die Veröffentlichung des ersten eigenen richtigen Modells, OpenOrca-Preview1-13B.

Das Team von OpenOrca nutzt das Dataset, um in dem Modell ein LLaMA-13B entsprechend finezutunen. Dabei wurden bisher weniger als 6% des Datensatzes zum Training eingesetzt und dieser Release soll nur als Vorschau einen Einblick in den aktuellen Entwicklungsstand geben.

Es bleibt also weiterhin spannend. Neue Methoden und Techniken ermöglichen hochwertige und leistungsstarke Modelle, die es auch mit ihrer proprietären Konkurrenz aufnehmen können. Schauen wir, was uns auch nächste Woche erwartet!

  •  

Gnome 45: Die Community gibt einen ersten Ausblick

Jedes halbe Jahr erscheint eine neue Version von Gnome. Nachdem im März Version 44 der Desktopumgebung veröffentlicht wurde, steht nun Version 45 in den Startlöchern. Die Reihe der Neuerungen wird im Rahmen eines Leserartikels von der Community beleuchtet.

  •  

KI-Wochenrückblick KW 27/2023

Langsam kündigt sich, wie wir heute in den Nachrichten sehen werden, in der KI-Welt eine kleine Sommerpause an, sodass es etwas ruhiger wird. In dieser Woche hat OpenAI wieder für die eine oder andere Schlagzeile gesorgt, weswegen sich der Wochenrückblick speziell darauf konzentrieren wird.

Vermuteter ChatGPT-Traffic geht zurück

Traffic von fremden Webseiten zu messen ist eine gar nicht so einfache Angelegenheit. Am Ende des Tages weiß nur der Betreiber der Webseite, wie viele Inhalte er an wie viele IP-Adressen ausgeliefert hat, woraus man eine Nutzerzahl abschätzen kann. SimilarWeb ist ein Dienstleister, der sich auf Schätzungen über den Traffic externer Webseiten spezialisiert hat und nimmt dafür Ersatzmetriken zur Hilfe.

Über ChatGPT berichtet SimilarWeb nun, dass der Traffic von Mai zum Juni hin um etwa 10 Prozent gesunken sein soll. Die Anzahl der einzigartigen Nutzer soll um etwas über 5 Prozent, die auf der Webseite verbrachte Zeit um etwa 8 Prozent gesunken sein.

Unabhängig von den Zahlen kann ich den Trend nachvollziehen. Einerseits zeichnet sich die Sommerpause ab, in der viele im Urlaub sind und den Dienst weniger beruflich "ausprobieren". Andererseits weiß der beträchtlich große Nutzerkreis von ChatGPT mittlerweile um die Funktionen des LLM, weshalb die Neugier der Nutzer vermutlich abnimmt. ChatGPT kommt nun langsam als klassisches Werkzeug im Mainstream an.

GPT-4 API für alle

Passend dazu hat OpenAI die API für GPT-4 nun von der Warteliste befreit und stellt den Dienst für alle Nutzer bereit. Ob es einen Zusammenhang zur vorherigen Nachricht mit den dadurch frei werdenden Ressourcen gibt, werden wir sicherlich nie erfahren, aber schon bei früheren Diensten wie DALL-E hat OpenAI nach einer anfänglichen Startphase die künstliche Verknappung über die Warteliste auslaufen lassen.

In der dazugehörigen Blognachricht wurde gleichzeitig angekündigt, die Completions-API Anfang 2024 aufzugeben. An dieser Stelle wird wieder deutlich, wie sehr OpenAI auch weiterhin ein Start-up ist. War das bisherige API-Konzept mit GPT-3 auf die Vervollständigung von Anfragen ausgelegt, hat sich dies durch den plötzlichen Erfolg von ChatGPT stark verändert. LLMs agieren interaktiv und können auf Folgefragen antworten. Dies wird offenbar durch die Chat-API am besten repräsentiert, weswegen OpenAI sich hierauf jetzt konzentriert. Die Änderungen wurden schon im OpenAI Playground wirksam.

ChatGPT Code Interpreter

Ich kann mich noch gut an den Dezember 2022 erinnern, als ein Artikel über eine [imaginäre virtuelle Maschine innerhalb des neuen LLMs ChatGPT] die Runde machte. Daraufhin habe ich mir ChatGPT erstmals genauer angesehen. Damals hat sich ChatGPT eine VM halluziniert, ein Verhalten, das zeitnah leider schon eingedämmt wurde. Mittlerweile wurde aber aus der Fiktion Realität: ChatGPT Plus verfügt Berichten und einem Tweet zufolge nun über ein Plugin, dass es ermöglicht, Code innerhalb einer Sandbox auszuführen.

Damit wird ChatGPT noch leistungsfähiger und kann für immer mehr Aufgaben eingesetzt werden. Das war bisher eine Herausforderung, aber auch ein Forschungsthema, das bezogen auf Tools auch mit dem Toolformer oder Visual ChatGPT zu interessanten Ergebnissen führte. Auf diese Weise kann ChatGPT auch deterministischer werden: so braucht ChatGPT ggfs. für eine komplexe Aufgabe nur den benötigten Code generieren - die Berechnung wird dann in der Sandbox vorgenommen und kommt zu den Ergebnissen mit der nötigen Präzision.

Schauen wir auch in der nächsten Woche, mit was für Fortschritten und spannenden Nachrichten wir rechnen können.

  •  

Das Red Hat Linux Closed Source Drama - Sind Firmen schädlich für Linux und Open Source?

💾

In diesem Video geht es um aktuelle Neuigkeiten über Red Hat. Wird RHEL nun tatsächlich ein Linux Closed Source Produkt? Und wenn ja, warum machen die das. Außerdem soll es darum gehen, ob Firmenbeteiligungen tatsächlich schädlich für das Linux Eco-System sind.

Linux Bücher für Einsteiger von mir (Ebook und Taschenbuch):
▶️ https://www.amazon.de/~/e/B001K73R84

Brandneu:
Debian 12 - Schnellanleitung für Einsteiger
▶️ https://www.amazon.de/dp/B0C91RFXXJ
Linux Mint 21 - Schnellanleitung für Einsteiger
▶️ https://www.amazon.de/dp/B0BB9LGMPG

0:00 Red Hat Linux ab jetzt Closed Source?
9:45 Sind Firmen schädlich für Linux und Open Source?
Weitere Videos zu Linux Distributionen findet Ihr in dieser Playlist:
▶️ https://www.youtube.com/watch?v=sdYcdG4mn98&list=PLl0zRfPkQ7Xu86XQgKbUhVRSBbHpUzxxM

Andere Kanäle von mir:
Joe loves Linux ▶️ https://www.youtube.com/channel/UCdI8plWGpNHwN1oswHi3iWA
Raketenheftleser ▶️ https://www.youtube.com/channel/UCyPNZr7yK8278QXQDMFnQag
Joe's Musik Check ▶️ https://www.youtube.com/channel/UCuB7gdAs73msDRUnlRRKv5Q
JJ Fotoshow ▶️ https://www.youtube.com/c/JoeTravels

Web:
▶️ www.linuxumsteiger.net
▶️ www.josef-moser.de

Abonniere den Kanal:

▶️ https://www.youtube.com/channel/UCnKExIc8hWK5yS6VwVerqaA?sub_confirmation=1

Mit Superthanks kannst Du den Kanal unterstützen, wenn Du das möchtest.


#linux #ubuntu
  •  

KI-Wochenrückblick KW 26/2023

Im heutigen Wochenrückblick schauen wir auf einen spannenden Essay, ein interessantes Tool für Code-Migrationen und ein neues Open-Source-LLM für große Sequenzlängen.

The Rise of the AI Engineer

Beginnen wir den heutigen Wochenrückblick mit einem Artikel, der in der Woche disktutiert wurde. swyx hat auf Latent Space den Artikel The Rise of the AI Engineer veröffentlicht. Im Artikel geht es um die Entstehung eines komplett neuen Berufszweiges: dem AI Engineer. Dabei ist der AI Engineer die Weiterentwicklung des Prompt Engineers und wird im Essay auf einer Skala eingeordnet. Der AI Engineer beschäftigt sich wenig mit der genauen Funktionsweise von ML-Modellen, vielmehr versteckt ihm die API wie z. B. von OpenAI die technischen Details und ermöglicht ihm, sich auf das Wesentliche zu konzentrieren: sein Produkt.

War es vor zehn Jahren noch ein forschungsnahes Vorhaben, ein Produktempfehlungssystem zu entwerfen, ist es durch die Verfügbarkeit von schnell einsetzbaren Diensten heutzutage möglich, die gewünschte Funktionalität zu integrieren. Integration, das ist es, was den AI Engineer ausmacht. Er muss nicht wissen, wie ein LLM genau funktioniert, er muss nur wissen, was es tut. Insbesondere erwähnt der Autor des Essays, dass die Few-Shot-Modelle dazu geführt haben, dass ML-Forscher selber nicht mehr das Modell wie GPT-4 auf den Einsatzzweck abstimmen, sondern diese Aufgabe von Anwendern übernommen wird, die Zeit mit dem Modell und der Schnittstelle verbringen und ausprobieren, was man damit tun kann.

Das alles wird nicht einfach sein, vor allem, da klassische ML-Forscher über lange Zeit hinweg dieses Feld noch belächeln werden. Behält man diesen Wandel allerdings im Hinterkopf, kann man sich schon jetzt darauf einstellen und wird nicht überrascht, wenn in fünf Jahren Menschen, deren Vollzeitjob die Integration von ML-Systemen ist, hohe Gehälter und einen substantiellen Einfluss auf den Geschäftsbetrieb vieler Firmen erhalten.

GPT-Migrate

Wie so eine konkrete Anwendung aussehen kann, zeigt bereits GPT-Migrate. Hier handelt es sich um ein interessantes Produkt, das eine Codebase von einer Programmiersprache in eine andere umwandelt.

Das Projekt selber setzt auch nur auf bestehende LLMs, nutzt sie aber in einer besonders abgestimmten Art und Weise. Der Code soll nicht nur starr umgewandelt, sondern auch idiomatisch sinnvoll ausgegeben werden. Wandelt man beispielsweise ein Python-Projekt in eine Node.js-Application um, besteht die Arbeit aus mehr als nur einer 1:1-Umwandlung der Statements. Vielmehr müssen die Frameworks beachtet werden mit ihrer individuellen Weise, Lösungen abzubilden.

Betrachten wir ein solches Projekt aus der akademischen Sicht, ist so ein Projekt ein Himmelfahrtskommando: Wir können nicht mit hinreichender Sicherheit sagen, ob es immer zuverlässig funktioniert. In der Praxis hat dieser Umstand für den durchschnittlichen Anwender allerdings eine untergeordnete Rolle: wenn es auch nur regelmäßig funktioniert, bringt es viele Entwickler für ihre Durchschnittsprojekte schon weiter. So sind Informatiker heutzutage auch nicht durchgängig mehr damit beschäftigt, richtige Algorithmen für z. B. Sortierung zu entwerfen, sondern reihen eher fertige Programmfragmente und -prozeduren aneinander. Eine unbeaufsichtigte Dienstleistung für Codeumwandlung sollte dennoch nicht auf so einem einfachen System aufgebaut werden. Die Abstimmung, die feinen Anpassungen und die Risikoanalyse - auch das werden in meinen Augen Aufgaben des AI Engineers sein.

Salesforce XGen

Neue Modelle sollen auch in diesem Wochenrückblick nicht fehlen. In dieser Woche haben wir diesbezüglich wieder einen alten Bekannten dabei: Salesforce, bekannt von BLIP2 oder CodeT5. Diesmal hat sich das Forschungsteam rund um Nijkamp, Xie, Hayashi, Pang und Xia mit Open-Source-LLMs für besonders hohe Sequenzen beschäftigt.

Die Sequenzlänge als maximale Länge einer Eingabe für das LLM ist neben der Parameterzahl einer der wichtigsten numerischen Einflussfaktoren für die Leistungsfähigkeit von LLMs. Soll ein solches Modell beispielhaft einen Text zusammenfassen, kann ein LLM mit 8 Tsd. Tokens Sequenzlänge deutlich mehr Text in einem Zug verarbeiten als ein LLM mit 2 Tsd. Tokens Sequenzlänge. Dass die Sequenzlänge in Tokens statt Wörtern gemessen wird, ist auf die mathematische Darstellung der Eingaben für LLMs zurückzuführen. Im Wochenrückblick der vergangenen Woche habe ich für diese Thematik Lehrmaterial vorgestellt.

Salesforce hat unter dem Namen XGen-7B Modelle mit einer Sequenzlänge von 8 Tsd. Tokens und einer Parameterzahl von 7 Mrd. trainiert, die den bisherigen Open-Source-Modellen mit nur 2 Tsd. Tokens wie LLaMA, MPT oder Falcon in standardisierten Benchmarks wie MMLU oder SCROLLS mindestens gleichauf sind. Die kommerzielle Konkurrenz kommt mit GPT-4 auf 32 Tsd. Tokens oder mit Claude auf 100 Tsd. Tokens. Das Training wurde mit 1,5 Billionen Tokens (hier nicht Sequenzlänge, sondern Anzahl der Tokens, auf deren Basis trainiert wurde) durchgeführt und hat über 150.000 US-Dollar gekostet.

Weitere Informationen zu XGen sind im Blogartikel von Salesforce Research zu finden. Die XGen-7B-Modelle sind in verschiedenen Varianten auf HuggingFace unter der Apache-2.0-Lizenz verfügbar, der zugrundeliegende Code kann unter GitHub abgerufen werden.

Und so geht wieder eine spannende Woche zu Ende, in der wir beobachten konnten, wie einerseits weiterhin neue Open-Source-Modelle mit Verbesserungen veröffentlicht werden und andererseits die Anwendung solcher Modelle zunehmend in den Vordergrund tritt. Schauen wir, was uns auch in den nächsten Tagen wieder erwartet!

  •  

KI-Wochenrückblick KW 25/2023

Und wieder ist eine Woche um! Im heutigen Wochenrückblick geht es um drei Nachrichten und einen Lesetipp.

MPT-30B

In fast jeder Woche erscheinen neue KI-Modelle. Seien es komplett neue Modelle wie Falcon oder Vertreter bestehender Modellfamilien wie das diese Woche veröffentlichte MPT-30B.

Konkurrenz belebt das Geschäft. Während Falcon-40B als eines der leistungsstärksten Open-Source-LLMs viele Benchmarks für sich entscheidet, ist das Deployment aufgrund der hohen Parameteranzahl teilweise mitunter herausfordernd. MPT-30B stellt sich hier als Alternative auf und gibt an, dass es auf einer A100-80G mit 16-Bit-Präsizion oder einer A100-40GB mit 8-Bit-Präsizion bereitgestellt werden kann. Ansonsten baut das Modell auf dem bereits vor einigen Wochen vorgestellten MPT-7B auf und wird durch seine Programmierfähigkeiten charaketerisiert, die durch die Auswahl der Trainingsdaten angelernt werden konnten. Das Modell ist wieder in verschiedenen Facetten verfügbar: als Basismodell, für Instruktionen optimiert oder für Chat optimiert.

SDXL 0.9

Stable Diffusion XL (SDXL) ist eine Weiterentwicklung aus dem Hause Stability AI. Deren erstes Produkt Stable Diffusion hat schon überzeugt, weil es eine Alternative zu OpenAI DALL-E war. Bei Stability AI werden öffentlichkeitswirksam die Entwicklungen im Blog vorgestellt und so war bereits SDXL Beta interessant, weil es nochmals die Fähigkeiten des Bildgenerators erweitert.

SDXL 0.9 ist nun der Nachfolger von SDXL Beta. Im Blogeintrag kann im direkten Vergleich nachvollzogen werden, dass SDXL 0.9 Bilder generiert, die deutlich besser zu den Bildbeschreibungen passen. Technisch wurde der Fortschritt durch eine Erhöhung der Parameterzahl erreicht. Mit 3.5 Mrd. Parametern als Basismodell und einer 6.6 Mrd. Parameter starken Ensemble-Pipeline handelt es sich dabei um das nach eigenen Angaben parameterstärkste Open-Source-Bildmodell. SDXL 0.9 ist bereits auf ClipDrop für den Einsatz verfügbar und kann über HuggingFace direkt bezogen werden.

Mercedes-Benz testet ChatGPT

Die Entwicklung der LLMs macht momentan vor den Systemen halt, bei denen man Sprachfähigkeiten am ehesten erwartet: Sprachassistenten auf Smartphones. Hier müssen wir uns bei den verbreiteten Systemen weiterhin noch auf die voreingestellten Fähigkeiten beschränken, die einprogrammiert wurden. Konkurrenz kommt nun von ungewohnter Seite: Mercedes-Benz hat in den letzten Tagen für die US-Kunden bekanntgegeben, in einer frühen Betaversion ChatGPT für die Sprachassistenz in ausgewählten Automodellen mit MBUX zu unterstützen.

Die Teilnahme an dem Programm ist optional. In der Pressemitteilung wird insbesondere der Datenschutz und die Hoheit über IT-Prozesse hervorgehoben. Technisch wird dieses Vorhaben über eine Kooperation mit Microsoft und dem Azure OpenAI Service umgesetzt.

Embeddings

KI ist ein sehr komplexes Thema, das viele Disziplinen umfasst. Umso wichtiger ist es, hochwertige Lernmaterialien zu beziehen. Vicki Boykis hat mit What are embeddings ein umfangreiches Handbuch ausgearbeitet, das sich mit einem wichtigen Kernelement beschäftigt, das LLMs heutzutage erst möglich macht. Konkret geht es dabei um Verfahren, natursprachliche Texte in Zahlen zu verwandeln, um sie mathematisch verarbeitbar zu machen.

Das Handbuch umfasst neben Erklärungen und mathematischen Hintergründen auch Codebeispiele, um selber einmal am Beispiel auszuprobieren, wie Embeddings konkret funktionieren.

Bis zur nächsten Woche!

  •  

Red Hat: Enterprise Linux schließt seine Quellen für Dritte

Red Hat Enterprise Linux als Bezahl-Distribution für zertifizierte Anwendungen sperrt seine öffentlichen Quellen, welche bislang für binärkompatible und kostenfreie Nachbauten wie AlmaLinux genutzt wurden. Damit bleibt nur noch CentOS Stream öffentlich verfügbar, das aber mehr einer Test- und Entwicklungsplattform entspricht.

  •  

Updates unter Linux: Paketmanager NIX aktualisiert (fast) alles

So komfortabel Paketmanager unter Linux auch sind, der Umfang der verfügbaren Software richtet sich nach der verwendeten Distribution. Dabei unterscheiden sich auch Programmversionen oftmals zwischen verschiedenen Distros. Mit über 80.000 Paketen in NIX rücken der Unterbau und dessen Quellen in den Hintergrund.

  •  

KI-Wochenrückblick KW 24/2023

Während der letzte KI-Wochenrückblick etwas kürzer ausfiel, da die gefühlt gesamte Tech-Welt nach Cupertino geschaut hat, gibt es in dieser Woche etwas mehr zu berichten. Starten wir also rein!

AI und Compliance

Üblicherweise steht bei Tech-Themen die Technologie im Vordergrund. Nicht so bei KI. Man kann es vielleicht dem Zeitgeist oder den Erfahrungen mit dem Internet zuschreiben, aber bei rechtlichen oder gesellschaftlichen Auswirkungen wird bei KI ein strenger Maßstab angelegt. So hat in dieser Woche das EU-Parlament den lange diskutierten AI Act eine Stufe weitergeschoben. Im wesentlichen bedeutet der AI Act, dass man nicht mehr jede beliebige KI-Anwendung auf den Markt werfen kann. Erfüllt eine Anwendung bestimmte Kriterien, müssen zusätzliche, bürokratische Schritte zur Qualitätssicherung und Folgenabschätzung vorgenommen werden. Welche Kriterien das sind und was daraus folgt, ist im aktuellen Prozess schwer zu verfolgen, reicht(e) aber von "ChatGPT wird praktisch verboten" bis "Es wird sehr aufwändig".

Besonders schwierig ist es, die Auswirkungen eines solchen Regelwerks anhand konkreter Beispiele nachzuvollziehen. Risihi Bommasani vom Stanford CRFM hat diese Woche auf Twitter demonstriert, wie das aussehen könnte. Er und sein Team haben für 10 verschiedene KI-Anbieter in einer Punktematrix dargelegt, wo welche Anbieter punkten und wo noch Nachbesserungsbedarf ist. Besonders gut kam BigScience (BLOOM) an, hier wurden 36 von 48 möglichen Punkten geholt, besonders bei "Data sources", "Data governance" und "Downstream documentation" konnte BigScience punkten.

Sehen, was der andere sieht

Typische Ermittlerdokus sind der KI schon seit Jahrzehnten voraus und können die Regeln von Raum und Zeit auf Überwachungsvideos außer Kraft setzen. Aktuelle Entwicklungen in der KI ziehen aber langsam nach. Mit Seeing the World through Your Eyes haben Alzayer et al. von der University of Maryland, College Park gezeigt, dass die Reflexion der Pupillen eines Menschen in Bildsequenzen genutzt werden kann, um das Gesehene aus seiner Perspektive als 3D-Modell abzubilden.

So wird "Point of View" real und kann benutzt werden, um Gegenstände, die die Person sieht, wiederzuerkennen. Natürlich ist die Technologie nicht perfekt und verfügt über eine geringe Auflösung, zeigt aber, dass in den verschiedensten Bereichen der Musterverarbeitung Entwicklung stattfindet. Dieses Paper setzt auch neuronale Netze lediglich am Rande ein, was noch einmal verdeutlicht, dass KI nicht nur aus LLMs und Transformers besteht.

LLMs und Secret Sauce

Nichtdestotrotz bleiben die LLMs ein Thema. Galine Alperovich hat im letzten Monat eine Zusammenstellung von Tricks veröffentlicht, um 100K Context Windows zu ermöglichen. Mit Claude haben wir bereits ein System gesehen, was so ein enormes Kontextfenster umsetzt, auch MPT weist mittlerweile Kontextfenster um die 65.000 Token auf.

Ihre dargelegten Hinweise können genutzt werden, um das Training von eigenen Modellen zu optimieren, denn das stellt heutzutage die große Kunst dar. Dass das Training generell möglich ist, haben wir gesehen. Es aber auch aufwandsarm umzusetzen, kann einerseits die Kosten senken, aber auch das Training für kleinere Akteure generell erst möglich machen.

Abschließend für den heutigen Wochenrückblick können wir auch nochmal auf OpenLLaMA schauen. Viele Teams haben sich in der Zwischenzeit rangesetzt, um Meta AIs Arbeit zumindest zu reproduzieren. Die Ergebnisse trudeln Woche für Woche ein. Seit dieser Woche sind nun auch die Gewichte für OpenLLaMA-13B auf HuggingFace verfügbar.

Bleiben wir gespannt, was uns auch die nächste Woche wieder an Neuigkeiten bringt!

  •  
❌