Lese-Ansicht

Coding mit KI in der Praxis: Der Fragebogen

Vor einem dreiviertel Jahr haben Bernd Öggl, Sebastian Springer und ich das Buch Coding mit KI geschrieben und uns während dieser Zeit intensiv mit diversen KI-Tools und Ihrer Anwendung beschäftigt.

Was hat sich seither geändert? Wie sieht die berufliche Praxis mit KI-Tools heute aus? Im folgenden Fragebogen teilen wir drei unsere Erfahrungen, Wünsche und Ärgernisse. Sie sind herzlich eingeladen, in den Kommentaren eigene Anmerkungen hinzuzufügen.

Bei welchen Projekten hast du KI-Tools im letzten Monat eingesetzt? Mit welchem Erfolg?

Bernd: KI-Tools haben in meine tägliche Programmierung Einzug gehalten und sparen mir Zeit. Oft traue ich der Ki zu wenig zu und stelle Fragen, die nicht weit genug gehen. Zum „vibe-coding“ bin ich noch nicht gekommen :-) Ich verwende KI-Tools in diesen Projekten:

  1. ein großes Code Repo mit Angular und C#: Einsatz sowohl in VSCode (Angular) und Visual Studio (C#, die Unterstützung ist überraschend gut).
  2. ein kleines Projekt (HTML, JS, MongoDB (ca. 20.000 MongoDocs)).
  3. zwei verschiedene Flutter Apps für Android
  4. für eine größere PHP/MariaDB Codebase

Sebastian: Ich setze mittlerweile verschiedene KI-Tools flächendeckend in den Projekten ein. Wir haben das mittlerweile auch in unsere Verträge mit aufgenommen, dass das explizit erlaubt ist.

Die letzten Projekte waren in JavaScript/TypeScript im Frontend React, im Backend Node.js, und es waren immer mittelgroße Projekte mit 2 – 4 Personen über mehrere Monate.

Die verschiedenen Tools sind mittlerweile zum Standard geworden und ich möchte nicht mehr darauf verzichten müssen, gerade bei den langweiligen Routineaufgaben helfen sie enorm.

Michael: Ich habe zuletzt viele Swift/SwiftUI-Beispielprogramme für ein neues Buch mit KI-Unterstützung entwickelt. Weil Swift und insbesondere SwiftUI ja noch sehr dynamisch in der Weiterentwicklung ist, hatten die KI-Tools die Tendenz, veraltete Programmiertechniken vorzuschlagen. Aber mit entsprechenden Prompts (use modern features, use async/await etc.) waren die Ergebnisse überwiegend gut (wenn auch nicht sehr gut).

Ansonsten habe ich in den letzten Monaten immer wieder kleinere Mengen Code in PHP/MySQL, Python und der bash geschrieben bzw. erweitert. Mein Problem ist zunehmend, dass ich beim ständigen Wechsel die Syntaxeigenheiten der diversen Sprachen durcheinanderbringe. KI-Tools sind da meine Rettung! Der Code ist in der Regel trivial. Mit einem sorgfältig formulierten Prompt funktioniert KI-generierter Code oft im ersten oder zweiten Versuch. Ich kann derartige Routine-Aufgaben mit KI-Unterstützung viel schneller erledigen als früher, und die KI-Leistungen sind diesbezüglich ausgezeichnet (besser als bei Swift).

Welches KI-Tool verwendest du bevorzugt? In welchem Setup?

Michael: Ich habe in den vergangenen Monaten fast ausschließlich Claude Pro verwendet (über die Weboberfläche). Was die Code-Qualität betrifft, bin ich damit sehr zufrieden und empfand diese oft besser als bei ChatGPT.

In VSCode läuft bei mir Cody (Free Tier). Ich verwende es nur für Vervollständigungen. Es ist OK.

Ansonsten habe ich zuletzt den Großteil meiner Arbeitszeit in Xcode verbracht. Xcode ist im Vergleich zu anderen IDEs noch in der KI-Steinzeit, die aktuell ausgelieferten KI-Werkzeuge in Xcode sind unbrauchbar. Eine Integration von Claude in Xcode hätte mir viel Hin und Her zwischen Xcode und dem Webbrowser erspart. (Es gibt ein Github-Copilot-Plugin für Xcode, das ich aber noch nicht getestet habe. Apple hat außerdem vor fast einem Jahr Swift Code angekündigt, das bessere KI-Funktionen verspricht. Leider ist davon nichts zu sehen. Apple = Gute Hardware, schlechte Software, zumindest aus Entwicklerperspektive.)

Für lokale Modelle habe ich aktuell leider keine geeignete Hardware.

Sebastian: Ich habe über längere Zeit verschiedene IDE-Plugins mit lokalen Modellen ausprobiert, nutze aber seit einigen Monaten nur noch GitHub Copilot. Die Qualität und Performance ist deutlich besser als die von lokalen Modellen.

Für Konzeption und Ideenfindung nutze ich ebenfalls größere kommerzielle Werkzeuge. Aktuell stehen die Gemini-Modelle bei mir ganz hoch im Kurs. Die haben mit Abstand den größten Kontext (1 – 2 Millionen Tokens) und die Ergebnisse sind mindestens genauso gut wie bei ChatGPT, Claude & Co.

Lokale Modelle nutze ich eher punktuell oder für die Integration in Applikationen. Gerade wenn es um Übersetzung, RAG und ähnliches geht, wo es entweder um Standardaufgaben oder um Teilaufgaben geht, wo man mit weiteren Tools wie Vektordatenbanken die Qualität steuern kann. Bei den lokalen Modellen hänge ich nach wie vor bei Llama3 wobei sich auch die Ergebnisse von DeepSeek sehen lassen können.

Für eine kleine Applikation habe ich auch europäische Modelle (eurollm und teuken) ausprobiert, wobei ich da nochmal deutlich mehr Zeit investieren muss.

Für die Ausführung lokaler Modelle habe ich auf die Verfügbarkeit der 50er-Serie von NVIDIA gewartet, wobei mir die RTX 5090 deutlich zu teuer ist. Ich habe seit Jahresbeginn ein neues MacBook Pro (M4 Max) das bei der Ausführung lokaler Modelle echt beeindruckend ist. Mittlerweile nutze ich das MacBook deutlich mehr als meinen Windows PC mit der alten 3070er.

Bernd: Ich verwende aus Interesse vor allem lokale Modelle, die auf meinem MacBook Pro (M2/64GB) wunderbar schnell performen (aktuell gemma3:27b und deepseek-r1:32b, aber das ändert sich schnell). Am MacBook laufen die über ollama. Ich muss aber beruflich auch unter Windows arbeiten und arbeite eigentlich (noch) am liebsten unter Linux mit neovim.

Dazu ist das Macbook jetzt immer online und im lokalen Netz erreichbar. Unter Windows verwenden ich in VSCode das Continue Plugin mit dem Zugriff auf die lokalen Modelle am MacBook. In Visual Studio läuft CoPilot (die „Gratis“-Version). Unter Linux verwende ich sehr oft neovim (mit lazyvim) mit dem avante-Plugin. Während ich früher AI nur für code-completion verwendet habe, ist es inzwischen oft so, dass ich Code-Blöcke markiere und der AI dazu Fragen stelle. Avante macht dann wunderbare Antworten mit Code-Blöcken, die ich wie einen git conflict einbauen kann. Sie sagen es ist so wie cursor.ai, aber das habe ich noch nicht verwendet.

Daneben habe ich unter Linux natürlich auch VSCode mit Continue. Und wenn ich gerade einmal nicht im Büro arbeite (also das Macbook nicht im aktuellen Netz erreichbar ist), so wie gerade eben, dann habe ich Credits für Anthropic und verwende Claude (3.5 Sonnet aktuell) für AI support.

Wo haben dich KI-Tools in letzter Zeit überrascht bzw. enttäuscht?

Sebastian: Ich bin nach wie vor enttäuscht wie viel Zeit es braucht, um den Kontext aufzubauen, damit dir ein LLM wirklich bei der Arbeit hilft. Gerade wenn es um neuere Themen wie aktuelle Frameworks geht. Allerdings lohnt es sich bei größeren Projekten, hier Zeit zu investieren. Ich habe in ein Test-Setup für eine Applikation gleich mehrere Tage investiert und konnte am Ende qualitativ gute Tests generieren, indem ich den Testcase mit einem Satz beschrieben habe und alles weitere aus Beispielen und Templates kam.

Ich bin sehr positiv überrascht vom Leistungssprung den Apple bei der Hardware hingelegt hat. Gerade das Ausführen mittelgroßer lokaler LLMs merkt man das extrem. Ein llama3.2-vision, qwq:32b oder teuken-7b funktionieren echt gut.

Bernd: Überrascht hat mich vor allem der Qualitäts-Gewinn bei lokalen Modellen. Im Vergleich zu vor einem Jahr sind da Welten dazwischen. Ich mache nicht ständig Vergleiche, aber was die aktuellen Kauf-Modelle liefern ist nicht mehr so ganz weit weg von gemma3 und vergleichbaren Modellen.

Michael: Ich musste vor ein paar Wochen eine kleine REST-API in Python realisieren. Datenbank und API-Design hab‘ ich selbst gemacht, aber das Coding hat nahezu zu 100 Prozent die KI erledigt (Claude). Ich habe mich nach KI-Beratung für das FastAPI-Framework entschieden, das ich vorher noch nie verwendet habe. Insgesamt ist die (einzige) Python-Datei knapp 400 Zeilen lang. Acht Requests mit den dazugehörigen Datenstrukturen, Absicherung durch ein Time-based-Token, komplette, automatisch generierte OpenAPI-Dokumentation, Wahnsinn! Und ich habe wirklich nur einzelne Zeilen geändert. (Andererseits: Ich wusste wirklich ganz exakt, was ich wollte, und ich habe viel Datenbank- und Python-Basiswissen. Das hilft natürlich schon.)

So richtig enttäuscht haben mich KI-Tools in letzter Zeit selten. In meinem beruflichen Kontext ergeben sich die größten Probleme bei ganz neuen Frameworks, zu denen die KI zu wenig Trainingsmaterial hat. Das ist aber erwartbar und insofern keine Überraschung. Es ist vielmehr eine Bestätigung, dass KI-Tools keineswegs von sich aus ‚intelligent‘ sind, sondern zuerst genug Trainingsmaterial zum Lernen brauchen.

Was wäre dein größter Wunsch an KI-Coding-Tools?

Bernd: Gute Frage. Aktuell nerven mich ein bisschen die verschiedenen Plugins und die Konfigurationen für unterschiedliche Editoren. Wie gesagt, neovim ist für mich wichtig, da hast du, wie in OpenSource üblich, 23 verschiedene Plugins zur Auswahl :-) Zum Glück gibt es ollama, weil da können alle anbinden. Ich glaub M$ versucht das eh mit CoPilot, eine Lösung, die überall funktioniert, nur ich will halt lokale Modelle und nicht Micro$oft….

Sebastian: Im Moment komme ich mit dem Wünschen ehrlich gesagt gar nicht hinterher, so rasant wie sich alles entwickelt. Microsoft hat GitHub Copilot den Agent Mode spendiert, TypeScript wird “mehr copiloty” und bekommt APIs die eine engere Einbindung von LLMs in den Codingprozess erlauben. Wenn das alles in einer ausreichenden Qualität kommt, hab ich erstmal keine weiteren Wünsche.

Michael: Ich bin wie gesagt ein starker Nutzer der webbasierten KI-Tools. Was ich dabei über alles schätze ist die Möglichkeit, mir die gesamte Konversation zu merken (als Bookmark oder indem ich den Link als Kommentar in den Code einbaue). Ich finde es enorm praktisch, wenn ich mir später noch einmal anschauen kann, was meine Prompts waren und welche Antworten das damalige KI-Modell geliefert hat.

Eine vergleichbare Funktion würde ich mir für IDE-integrierte KI-Tools wünschen. Eine KI-Konversation in VSCode mit GitHub Copilot oder einem anderen Tool sowie die nachfolgenden Code-Umbauten sind später nicht mehr reproduzierbar — aus meiner Sicht ein großer Nachteil.

Beeinflusst die lokale Ausführbarkeit von KI-Tools deinen geplanten bzw. zuletzt durchgeführten Hardware-Kauf?

Bernd: zu 100%! Mein MacBook Pro (gebraucht gekauft, M2 Max mit 64GB) wurde ausschließlch aus diesem Grund gekauft und es war ein großer Gewinn.

Ich habe jetzt ein 2.100 EUR Thinkpad und ein 2.200 EUR MacBook. Rate mal was ich öfter verwende :-) . Die Hardware beim Mac (besonders das Touchpad) ist besser und ich habe quasi alle Linux-Tools auch am Mac (fish-shell, neovim, git, Browser, alle anderen UI-Programme). Wenn ich unter Linux arbeite, denke ich mir oft: »Ah, das kann ich jetzt nicht ollama fragen, weil das nur am MacBook läuft«. Natürlich könnte ich Claude verwenden, aber irgend etwas im Kopf ist dann doch so: »Das muss man jetzt nicht über den großen Teich schicken.«

4000 EUR für die Nvidia-Maschine, die ich zusätzlich zum Laptop mitnehmen muss, ist kein Ding für mich. Ich möchte einen Linux Laptop, der die LLMs so schnell wie der Mac auswerten kann (und noch ein gutes Touchpad hat). Das ist der Wunsch ans Christkind …

Michael: Ein ärgerliches Thema! Ich bin bei Hardware eher sparsam. Vor einem Jahr habe ich mir ein Apple-Notebook (M3 Pro mit 36 GB RAM) gegönnt und damit gerade mein Swift-Buch aktualisiert. Leider waren mir zum Zeitpunkt des Kaufs die Hardware-Anforderungen für lokale LLMs zu wenig klar. Das Notebook ist großartig, aber es hat zu wenig RAM. Den Speicher brauche ich für Docker, virtuelle Maschinen, IDEs, Webbrowser etc. weitgehend selbst, da ist kein Platz mehr für große LLMs.

Aus meiner Sicht sind 64 GB RAM aktuell das Minimum für einen Entwickler-PC mit lokalen LLMs. Im Apple-Universum ist das sündhaft teuer. Im Intel/AMD-Lager gibt es wiederum kein einziges Notebook, das — was die Hardware betrifft — auch nur ansatzweise mit Apple mithalten kann. Meine Linux- und Windows-Rechner kann ich zwar billig mit mehr RAM ausstatten, aber die GPU-Leistung + Speicher-Bandbreite sind vollkommen unzureichend. Deprimierend.

Ein externer Nvidia-Mini-PC (kein Notebook, siehe z.B. die diversen Ankündigungen auf notebookcheck.com) mit 128 GB RAM als LLM-Server wäre eine Verlockung, aber ich bin nicht bereit, dafür plus/minus 4000 EUR auszugeben. Da zahle ich lieber ca. 20 EUR/Monat für ein externes kommerzielles Tool. Aber derartige Rechner, wenn sie denn irgendwann lieferbar sind, wären sicher ein spannendes Angebot für Firmen, die einen lokalen LLM-Server einrichten möchten.

Generell bin ich überrascht, dass die LLM-Tauglichkeit bis jetzt kein großes Thema für Firmen-Rechner und -Notebooks zu sein scheint. Dass gerade Apple hier so gut performt, war ja vermutlich auch nicht so geplant, sondern hat sich mit den selbst entwickelten CPUs als eher zufälliger Nebeneffekt ergeben.

Sebastian: Ursprünglich war mein Plan auf die neuen NVIDIA-Karten zu warten. Nachdem ich aber im Moment eher auf kommerzielle Tools setze und sich mein neues MacBook zufällig als richtige KI-Maschine entpuppt, werde ich erstmal warten, wie sich die Preise entwickeln. Ich bin auch enttäuscht, dass NVIDIA den kleineren karten so wenig Speicher spendiert hat. Meine Hoffnung ist, dass nächstes Jahr die 5080 mit 24GB rauskommt, das wär dann genau meins.

📚 Photovoltaik (3. Auflage)

Soeben ist die dritte Auflage unseres Photovoltaik-Buchs erschienen. Für diese Auflage haben wir das Buch an die aktuellen gesetzlichen Richtlinien und Förderungen angepasst. Gerade bei den Förderungen sieht es ja aktuell so aus, als würde die Politik einen Schritt zurück machen. In Österreich läuft die Umstatzsteuerbefreiung für private PV-Anlangen und -Komponenten ironischerweise genau heute aus. Schade!

Künstliches Scheitern: Technische Diagramme mit KI-Tools zeichnen

Unser Buch Coding mit KI wird gerade übersetzt. Heute musste ich diverse Fragen zur Übersetzung beantworten und habe bei der Gelegenheit ein paar Beispiele aus unserem Buch mit aktuellen Versionen von ChatGPT und Claude noch einmal ausprobiert. Dabei ging es um die Frage, ob KI-Tools technische Diagramme (z.B. UML-Diagramme) zeichnen können. Die Ergebnisse sind niederschmetternd, aber durchaus unterhaltsam :-)

UML-Diagramme

Vor einem halben Jahr habe ich ChatGPT gebeten, zu zwei einfachen Java-Klassen ein UML-Diagram zu zeichnen. Das Ergebnis sah so aus (inklusive der falschen Einrückungen):

+-------------------------+
|         Main            |
+-------------------------+
| + main(args: String[]): void |
| + initializeQuestionPool(): List<Question> |
+-------------------------+

+-------------------------+
|        Question         |
+-------------------------+
| - text: String          |
| - answers: List<Answer> |
| - correctAnswers: List<Answer> |
+-------------------------+
| + Question(text: String, answers: List<Answer>, 
|            correctAnswers: List<Answer>) |
| + askQuestion(): void   |
| - validateAnswer(userInput: String): boolean |
+-------------------------+

Dabei war ChatGPT schon damals in der Lage, PlantUML- oder Mermaid-Code zu liefern. Der Prompt Please generate PlantUML code instead liefert brauchbaren Code, der dann in https://www.planttext.com/ visualisiert werden kann. Das sieht dann so aus:

ChatGPT lieferte den Code für das UML-Diagramm, planttext.com visualisiert ihn

Heute habe ich das ganze Beispiel noch einmal ausprobiert. Ich habe also den Java-Code für zwei Klassen an ChatGPT übergeben und um ein UML-Diagramm gebeten. Vorbei sind die ASCII-Zeiten. Das Ergebnis sieht jetzt so aus:

ChatGPT nennt diesen von DALL-E produzierten Irrsinn ein »UML-Diagramm«
Etwas mehr Kontext zum obigen Diagramm

Leider kann ich hier keinen Link zum ganzen Chat-Verlauf angeben, weil ChatGPT anscheinend nur reine Text-Chat-Verläufe teilen kann.

Visualisierung eines Docker-Setups

Beispiel zwei ergibt sich aus zwei Prompts:

Prompt: I want to build a REST application using Python and Django. The application will run in a Docker container. Do I need a proxy server in this case to make my application visible to the internet?

Prompt: Can you visualize the setup in a diagram?

In der Vergangenheit (Mitte 2024) lieferte ChatGPT das Diagramm als ASCII-Art.

+---------------------------+
|      Client Browser       |
+-----------+---------------+
            |
            v
+-----------+---------------+
|       Nginx Reverse Proxy |
|  (Handles SSL, Load       |
|   Balancing, etc.)        |
+-----------+---------------+
            |
            v
+-----------+----------------+
| Docker Container Network   |
|                            |
|  +----------+   +---------+|
|  |  Web     |   |  DB     ||
|  | Container|   |Container||
|  +----------+   +---------+|
|   (Django)       (Postgres)|
+----------------------------+

Erst auf die explizite Bitte liefert es auch Mermaid-Code, der dann unter https://mermaid.live/ gezeichnet werden kann.

Heute (Dez. 2024) gibt sich ChatGPT nicht mehr mit ASCII-Art ab sondern leitet den Diagrammwunsch an DALL-E weiter. Das Ergebnis ist eine Katastrophe.

ChatGPT’s jämmerlicher Versuch, ein einfaches Docker-Setup zu visualisieren

Auch Claude.ai zeichnet selbstbewusst ein Diagramm des Docker-Setups. Dabei wird intern Mermaid verwendet.

Claude leidet offensichtlich unter bedrohlichen Farbstörungen, aber inhaltlich ist das Ergebnis besser als bei ChatGPT
Hier der relevante Teil des Chat-Verlaufs mit Claude

Fazit

Die Diagramme haben durchaus einen hohen Unterhaltungswert. Aber offensichtlich wird es noch ein wenig dauern, bis KI-Tools brauchbare technische Diagramme zeichnen können. Der Ansatz von Claude wirkt dabei erfolgsversprechender. Technische Diagramme mit DALL-E zu erstellen wollen ist doch eine sehr gewagte Idee von OpenAI.

Die besten Ergebnisse erzielen Sie weiterhin, wenn Sie ChatGPT, Claude oder das KI-Tool Ihrer Wahl explizit um Code in PlantUML oder Mermaid bitten. Den Code können Sie dann selbst visualisieren und bei Bedarf auch weiter optimieren.

Was erwarten Sie von einem IT-Fachbuch?

Als ich vor 40 Jahren zu schreiben begann, war klar, was ein IT-Fachbuch liefern musste: Korrekte Information zu einem Thema, zu einer Programmiersprache, zu Linux etc. … Je mehr Information, desto besser. Ein dickes Buch war also im Regelfall wertvoller als ein dünnes.

Das IT-Buch war damals nahezu konkurrenzlos: Zu kommerziellen Software-Produkten gab es im Idealfall ein gedrucktes Handbuch (oft lieblos gestaltet und von dürftiger Qualität), dazu eventuell noch ein paar Readme-Dateien; ansonsten waren Administratorinnen und Programmierer weitgehend auf sich selbst gestellt. Mit etwas Glück veröffentlichte eine der damals noch viel zahlreicheren Zeitschriften einen Artikel mit Lösungsideen für ein spezifisches Problem. Aber ansonsten galt: Learning by doing.

Mit dem Siegeszug des Internets änderte sich der IT-Buchmarkt zum ersten Mal radikal: Der Vorteil des Buchs lag nun darin, dass die dort zusammengestellten Informationen (hoffentlich!) besser recherchiert und besser strukturiert waren als die über das Internet und in Videos verstreuten Informationsschnipsel, Tipps und Tricks. Ein gutes Buch konnte ganz einfach Zeit sparen.

Das IT-Buch stand plötzlich in Konkurrenz zur Informationsfülle des Internets. Es liegt in der Natur der Sache, dass ein Buch nie so aktuell sein kann wie das Internet, nie so allumfassend bei der Themenauswahl. Im Internet finden sich selbst für exotische Funktionen Anleitungen, selbst zu selten auftretenden Fehlern Tipps oder zumindest Leidensberichte anderer Personen. Es hilft ja schon zu wissen, dass ein Problem nicht nur auf dem eigenen Rechner oder Server auftritt.

Natürlich habe auch ich als Autor von der einfachen Zugänglichkeit der Informationen profitiert. Während früher Ausprobieren der einzige Weg war, um bestimmte Techniken verlässlich zu dokumentieren, konnte ich jetzt auf den Erfahrungsschatz der riesigen Internet-Community zurückgreifen. Gleichzeitig sank aber der Bedarf nach IT-Büchern — und zwar in einem dramatischen Ausmaß. Viele Verlage, für die ich im Laufe der letzten Jahrzehnte geschrieben habe, existieren heute nicht mehr.

Mit der freien Verfügbarkeit von KI-Tools wie ChatGPT stehen wir heute vor einem weiteren Umbruch: Wozu noch nach einem Buch, einem StackOverflow-Artikel oder einem Blog-Beitrag suchen, wenn KI-Werkzeuge in Sekunden den Code für scheinbar jedes Problem, eine strukturierte Anleitung für jede Aufgabe liefern?

Möglichkeiten und Grenzen von KI-Tools

Seit die erste Version von ChatGPT online war, habe ich mich intensiv mit diesem und vielen anderen KI-Tools auseinandergesetzt. Natürlich habe ich darüber auch geschrieben, sowohl in diesem Blog als auch in Buchform: In Coding mit KI fassen Bernd Öggl, Sebastian Springer und ich zusammen, wie weit KI-Tools heute beim Coding und bei Administrationsaufgaben helfen — und wo ihre Grenzen liegen. Kurz gefasst: Claude, Copilot, Ollama etc. bieten bereits heute eine großartige Unterstüzung bei vielen Aufgaben. Sie machen Coding und Administration effizienter, schneller.

Ja, die Tools machen Fehler, aber sie sind dennoch nützlich, und sie werden jedes Monat besser. Ja, es gibt Datenschutzbedenken, aber die lassen sich lösen (am einfachsten, indem Sprachmodelle lokal ausgeführt werden). Ja, KI-Tools stellen mit ihrem exorbitaten Stromverbrauch vor allem in der Trainings-Phase eine massive ökologische Belastung dar; aber ich glaube/hoffe, dass sich KI-Tools mit bessere Hard- und Software in naher Zukunft ohne ein allzugroßes schlechtes Öko-Gewissen nutzen lassen.

Es ist für mich offensichtlich, dass viele IT-Arbeiten in Zukunft ohne KI-Unterstützung undenkbar sein werden. KI-Tools können bei der Lösung vieler Probleme die Effizienz steigern. Keine Firma, kein Admin, keine Entwicklerin wird es sich auf Dauer leisten können, darauf zu verzichten.

Die Zukunft des IT-Buchs

Ist »Coding mit KI« also das letzte IT-Buch, das Sie lesen müssen/sollen? Vermutlich nicht. (Aus meiner Sicht als Autor: Hoffentlich nicht!)

Auf jeden Fall ändern KI-Tools die Erwartungshaltung an IT-Bücher. Aktuell arbeite ich an einer Neuauflage meines Swift-Buchs. Weil sich inhaltlich viel ändert und ich bei vielen Teilen sowieso quasi bei Null anfangen muss, ist es das erste Buch, das ich von Grund auf im Hinblick auf das KI-Zeitalter neu konzipiere. In der vorigen Auflage habe ich über 1300 Seiten geschrieben und versucht, Swift und die App-Programmierung so allumfassend wie möglich darzustellen.

Dieses Mal bemühe ich mich im Gegenteil, die Seitenanzahl grob auf die Hälfte zu reduzieren. Warum? Weil ich glaube, dass sich das IT-Buch der Zukunft auf die Vermittlung der Grundlagen konzentriert. Es richtet den Blick auf das Wesentliche. Es erklärt die Konzepte. Es gibt Beispiele (durchaus auch komplexe). Aber es verzichtet darauf, endlose Details aufzulisten.

Was sind Ihre Erwartungen?

Ich weiß schon, immer mehr angehende und tatsächliche IT-Profis kommen ohne Bücher aus. Eigenes Ausprobieren in Kombination mit Videos, Blog-Artikeln und KI-Hilfe reichen aus, um neue Konzepte zu erlernen oder ganz pragmatisch ein Problem zu lösen (oft ohne es wirklich zu verstehen). Bleibt nur die Frage, warum Sie überhaupt auf meiner Website gelandet sind :-)

Persönlich lese ich mich in ein neues Thema aber weiterhin gerne ein, lasse mich von einem Autor oder einer Autorin von neuen Denkweisen überzeugen (zuletzt: Prometheus: Up & Running von Julien Pivotto und Brian Brazil). Bevorzugt mache ich das weit weg vom Computer. Wenn ich später ein Detail nochmals nachsehen will, ist mir ein E-Book willkommen. Aber beim ersten Lesen bevorzuge ich den analogen Zugang, ungestört und werbefrei.

Falls also auch Sie noch gelegentlich ein Buch zur Hand nehmen, dann interessiert mich Ihrer Meinung: Was erwarten Sie heute von einem IT-Buch? Was sind Ihre Wünsche an mich als Autor? Was ist aus Ihrer Sicht ein gutes IT-Buch, was ist ein schlechtes? Ich sage es sicherheitshalber gleich: Alle Wünsche kann ich nie erfüllen … Aber ich freue mich auf jeden Fall über Ihr Feedback!

Hetzner: Preisgünstig oder billig?

Meine Website kofler.info läuft in einer virtuellen Maschine. Und diese VM läuft wiederum auf einem Root-Server bei Hetzner. Seit ca. 4 Jahren, störungsfrei. Als Virtualisierungssystem verwende ich KVM. Auf dem Root-Server laufen auch andere VMs, die ich für die Arbeit an meinen Büchern sowie für den Unterricht an der Fachhochschule brauche.

Das Setup hat sich in den letzten 15 Jahren immer wieder gewandelt, dennoch ich bin Hetzner treu geblieben (auch in anderen beruflichen Projekten). Dass ich mich vor 15 Jahren gerade für Hetzner entschieden habe, war Zufall. Danach sah ich keinen Grund für einen Wechsel. Bis vor einer Woche. Und das ist eine etwas längere Geschichte.

Update 13.1.2025: Hetzner hat in in Zusammenarbeit mit dem Hersteller einen Designfehler des betroffenen Mainboards gefunden und tauscht jetzt alle betroffenen Mainboards aus. Respekt! Weitere Infos:

https://status.hetzner.com/de/incident/7fae9cca-b38c-4154-8a27-14e6dfea5c1e

Vorgeschichte: Ein Lob auf Hetzner

Ich bin seit ca. 15 Jahren Kunde der Firma Hetzner. Ich betreibe dort privat den oben erwähnten Root-Server. Auf Hetzner läuft auch ein Server, den ich und ein Freund für eine gemeinsame Firma administrieren und auf dem diverse Kunden täglich arbeiten. Bei Hetzner laufen schließlich diverse Websites, die ich für Freunde und Verwandte betreue. Auch meine Domains (z.B. kofler.info) werden via Hetzner administriert und abgerechnet.

In meinem Linux-Buch verwende ich Hetzner neben amazon/AWS als Beispiel für die Ausführung von eigenen Servern bzw. Cloud-Instanzen. (Das ist keine Empfehlung, weder für die eine noch für die andere Firma! Und natürlich bekomme ich von beiden Firmen nichts dafür, dass ich sie als Beispiel verwende. Aber irgendwelche Firmen muss ich für Beispiel-Setups verwenden. Ich brauche Firmen, die im europäischen Raum und international Stellenwert haben. Ich habe im Buch keinen Platz für fünf oder zehn Beispiele/Hoster/Cloud-Anbieter. Also habe ich mich für diese beiden entschieden.)

Seit 15 Jahren bin ich zufriedener Kunde bei Hetzner. Ja, meine Server hatten in dieser Zeit auch Probleme, z.B. einen Harddisk-Ausfall, der dank RAID ohne Datenverlust blieb und wo die Disk mit minimaler Downtime ausgetauscht wurde. Ein Server, der nach knapp 4 Jahren Dauereinsatz allmählich instabil wurde und den ich deswegen ein paar Monate vor dem schon geplanten Upgrade austauschen musste. Aber prinzipiell hat immer alles bestens funktioniert, sowohl was die langjährige Stabilität meiner Server betrifft, als auch was den selten benötigten Support betrifft.

Im Vergleich zu großen Cloud-Anbietern (und insbesondere im Vergleich zu AWS) ist ein Root-Server bei Hetzner viel preisgünstiger. Und in der Abrechnung beinahe unendlich viel einfacher. Ein Fixpreis mit 20 TB Traffic (die ich noch nie gebraucht habe), keine komplizierte Zusammensetzung aus einem halben Dutzend im Voraus schwer kalkulierbarer Preiskomponenten. Alles in allem: Für mich hat das Preis/Leistungsverhältnis gepasst, und ich war mit der Leistung zufrieden.

Ein neuer Server mit nur vier Monaten Lebenszeit

Im letzten Satz bin ich plötzlich ins Imperfekt gerutscht. Ich war zufrieden, ja, aber seit einer Woche bin ich massiv verunsichert. Ist Hetzner noch preisgünstig, oder ist das Angebot mittlerweile billig? Billig im Sinne, dass zwar der Preis stimmt, aber die Leistung nicht mehr? Seit ich Kunde bei Hetzner bin, ist die Firma zu einem riesigen Unternehmen geworden, das international auftritt. Geht Quantität vor Qualität?

Die Verunsicherung stammt von einem Server-Upgrade, das ich im April 2024 vorgenommen habe. Zur Ausführung eines großen LAMP-Systems (große Datenmengen, keine Virtualisierung!) habe ich einen AX52-Server in Betrieb genommen: AMD Ryzen 7700, 64 GB RAM, 4xPCIe-SSD mit je 1 TB. Die erste Unstimmigkeit trat schon vor der Installation auf: Im Live-System machte ich einen raschen SMART-Test für die vier SSDs:

for disk in /dev/nvme?n1; do echo $disk; smartctl -A $disk | grep -E 'Power On Hours|Data Units'; done

/dev/nvme0n1
  Data Units Read:     220,843,669 [113 TB]
  Data Units Written:  51,845,317 [26.5 TB]
  Power On Hours:      3,675

/dev/nvme1n1
  Data Units Read:     715,250,594 [366 TB]
  Data Units Written:  411,316,958 [210 TB]
  Power On Hours:      12,078

/dev/nvme2n1
  Data Units Read:     3,680,708 [1.88 TB]
  Data Units Written:  3,083,051 [1.57 TB]
  Power On Hours:      2

/dev/nvme3n1
  Data Units Read:     3,673,898 [1.88 TB]
  Data Units Written:  3,082,770 [1.57 TB]
  Power On Hours:      2 

Ergebnis: Zwei fabriksneue SSDs, zwei weitere SSDs, die schon eine Weile im Einsatz waren. Mir ist klar, dass ich mit einem neuen Server nicht automatisch neue SSDs bekomme, aber 12.078 Betriebsstunden = 1 1/2 Jahre ist schon ordentlich. 210 TB written bedeutet außerdem ca. 1/3 der garantierten Endurance für 1 TB-SSDs (siehe z.B. hier). Mein Plan war, den Server wieder ein paar Jahre laufen zu lassen. Insofern habe mich die SMART-Ergebnisse unglücklich gemacht. Ich habe Hetzner kontaktiert, die fragliche SSD wurde auf Kulanz durch eine andere SSD ersetzt, deren Nutzungsdaten etwas geringer waren. OK.

Der neue Server lief in der Folge drei Monate ohne eine Störung. Dann begannen plötzliche Abstürze/Reboots, zuerst ein Reboot alle zwei bis drei Stunden, aber schon einen halben Tag später Reboots innerhalb weniger Minute. (Vielleicht noch ein wenig Background: Dieser Server läuft die meiste Zeit komplett im Leerlauf. Klassisches LAMP-System, viele Datenbanken, Mail-Server etc., aber geringe Nutzung.)

Ich habe den Hetzner-Support kontaktiert, dieser schlug vor, den Server auszutauschen und die vier SSDs in einen neuen Server zu stecken. Nach meiner Zustimmung war der Server eine Stunde später wieder stabil online. Zwar war der vorangegangene 1/2 Tag mit Ausfällen verbunden, aber immerhin nicht mit einem Datenverlust.

Faszinierend: Nach dem Austausch mussten ich nichts an der Konfiguration ändern. Auf meinen Wunsch blieben die IPv4- und IPv6-Adressen unverändert. Die Netzwerkkonfiguration mit Netplan (Ubuntu) funktionierte daher out of the box. Was mich mehr verblüffte: Auch der Boot-Prozess via EFI/GRUB funktionierte auf Anhieb. Ein Lob an den Hetzner-Support und an die Qualität des Setup-Generators für Neuinstallationen!

Unbeantwortet blieb allerdings meine Frage, was denn die Ursache des raschen Server-Tods sein könnte. Die Stromversorgung? Ein instabiler Prozessor? Ein schadhaftes Mainboard? Keine Antwort von Hetzner heißt wohl: Offenbar hatte ich eben Pech mit der Hardware. Sollte nicht passieren, lässt sich aber vielleicht nicht ganz ausschließen.

Einmal ist keinmal, zweimal ist einmal zu viel

Vor einer Woche hat sich das Spiel wiederholt. Mitten in der Nacht begannen wieder plötzliche Reboots, in der Früh lagen zwischen den Reboots nur noch Minuten.

Server-Monitoring mit Prometheus und Grafana

Erster unerwarteter Reboot am 3.11. um 22:13, dann 12 weitere Reboots innerhalb von 8 Stunden.

last | grep reboot

reboot   system boot  6.8.0-48-generic Mon Nov  4 08:28   still running
reboot   system boot  6.8.0-48-generic Mon Nov  4 08:01 - 08:12  (00:10)
reboot   system boot  6.8.0-48-generic Mon Nov  4 06:53 - 08:12  (01:18)
reboot   system boot  6.8.0-48-generic Mon Nov  4 06:44 - 08:12  (01:27)
reboot   system boot  6.8.0-48-generic Mon Nov  4 06:38 - 08:12  (01:33)
reboot   system boot  6.8.0-48-generic Mon Nov  4 06:02 - 08:12  (02:10)
reboot   system boot  6.8.0-48-generic Mon Nov  4 06:00 - 08:12  (02:11)
reboot   system boot  6.8.0-48-generic Mon Nov  4 05:53 - 08:12  (02:18)
reboot   system boot  6.8.0-48-generic Mon Nov  4 04:40 - 08:12  (03:32)
reboot   system boot  6.8.0-48-generic Mon Nov  4 03:01 - 08:12  (05:11)
reboot   system boot  6.8.0-48-generic Mon Nov  4 02:36 - 08:12  (05:35)
reboot   system boot  6.8.0-48-generic Mon Nov  4 01:35 - 08:12  (06:36)
reboot   system boot  6.8.0-48-generic Mon Nov  4 01:17 - 08:12  (06:54)
reboot   system boot  6.8.0-48-generic Mon Nov  4 01:16 - 08:12  (06:55)
reboot   system boot  6.8.0-48-generic Sun Nov  3 22:13 - 08:12  (09:58)

Genau das gleiche Verhalten wie vor vier Monaten! Etwas verzweifelt habe ich neuerlich Hetzner kontaktiert, die den Server ebenso schnell wie beim ersten Mal austauschten. Seither ist der Server (Stand: heute, 11.11.2024) seit einer Woche störungsfrei.

Diesmal war ich hartnäckiger, was die Ursachenergründung anging. Ich habe bei Hetzner dreimal nachgefragt, was die Fehlerursache sein und wie weitere Ausfälle vermieden werden können. Ich habe explizit gefragt, ob es Problem mit der Stromversorgung des Racks gibt, in dem der Server löuft, oder ob die AX52-Serie instabil ist. In diesem Fall wäre ein Austausch des Servers gegen ein Modell einer andere Serie eine Option für mich.

Alleine, alle Fragen blieben unbeantwortet. Und das ist wirklich ärgerlich!

Update 13.11.: Heute ist doch noch eine Antwort eingetroffen. Die fraglichen Server werden untersucht, aber es ist bisher keine Ursache bekannt.

Update 13.1.2025: Hetzner hat in in Zusammenarbeit mit dem Hersteller einen Designfehler des betroffenen Mainboards gefunden und tauscht jetzt alle betroffenen Mainboards aus. Respekt! Weitere Infos:

https://status.hetzner.com/de/incident/7fae9cca-b38c-4154-8a27-14e6dfea5c1e

Jetzt frage ich Sie!

Die wenigen Server, die ich bei Hetzner betreibe, lassen naturgemäß keine statistisch wertvollen Aussagen zu. Ja, es kann tatsächlich sein, dass ich ZWEIMAL Pech hatte. Aber die Wahrscheinlichkeit dafür ist gering. Es wird also vermutlich eine plausible Begründung geben. Auf jeden Fall hat mein Vertrauen in den langjährigen Betrieb von Servern bei Hetzner einen massiven Dämpfer erfahren.

Unter den Lesern meiner Bücher, meines Blogs, meines mastodon-Auftritts gibt es sicher Admins, die Erfahrungen mit Hetzner haben. Ich würde mich über Rückmeldungen, egal ob privat per Mail, im Forum meiner Website oder auf mastodon, sehr freuen.

  • Sind Sie mit Hetzner so zufrieden, wie ich es bis vor kurzem war?
  • Haben Sie negative Erfahrungen gemacht?

  • Hat sich in den letzten Jahren etwas geändert?

  • Wie lange lassen Sie einen Root-Server laufen, wenn alles funktioniert? (Mein Zielwert war immer vier Jahre.)

  • Ist der Root-Server für Sie tot? D.h., ist die Cloud die Alternative? (Cloud-Angebote mit großen Disks sind allerdings ausgesprochen teuer.)

  • Und, vielleicht am interessantesten: Können Sie europäische Alternativen empfehlen? (Aus Datenschutzgründen ist ein US-Rechenzentrum keine wünschenswerte Alternative.)

Ich bedanke mich schon jetzt für jede Rückmeldung.

PS: Der eigene Betrieb von Servern ist für mich als Privatperson keine Option.

labwc ist der neue Wayland-Compositor für Raspberry Pi OS

Raspberry Pi OS »Bookworm« verwendet bekanntlich auf den Modellen 4* und 5 standardmäßig Wayland. Dabei kam als sogenannter »Compositor« das Programm Wayfire zum Einsatz. (Der Compositor ist unter anderem dafür zuständig, Fenster am Bildschirm anzuzeigen und mit einem geeigneten Fensterrahmen zu dekorieren.)

Mit dem neuesten Update von Raspberry Pi OS ändern sich nun zwei Dinge:

  • Anstelle von Wayfire kommt ein anderer Compositor zum Einsatz, und zwar labwc (GitHub).
  • Wayland kommt auf allen Raspberry Pis zum Einsatz, auch auf älteren Modellen.

Wenn Sie auf Ihrem Raspberry Pi das nächste Update durchführen, werden Sie bei nächster Gelegenheit gefragt, ob Sie auf labwc umstellen möchten. Aktuell werden Sie keinen großen Unterschied feststellen — labwc sollte genau wie wayfire funktionieren (vielleicht ein klein wenig effizienter). Langfristig haben Sie keine große Wahl: Die Raspberry Pi Foundation hat angekündigt, dass sie sich in Zukunft auf labwc konzentrieren und wayfire nicht weiter pflegen wird. Nach der Auswahl wird Ihr Raspberry Pi sofort neu gestartet.

Sie haben die Wahl: Wollen Sie X verwenden oder Wayland mit labwc

Alternativ können Sie die Einstellung auch mit sudo raspi-config durchführen. Unter Advanced Options / Wayland haben Sie die Wahl zwischen allen drei Optionen.

Einstellung des Grafiksystems in raspi-config

Bei meinen Tests stand nach dem Umstieg auf labwc nur noch das US-Tastatur-Layout zur Verfügung. Eine Neueinstellung in Raspberry Pi Configuration löste dieses Problem. Auch die Monitor-Konfiguration musste ich wiederholen. Dabei kommt auch ein neues Tool zum Einsatz(raindrop statt bisher arandr), das optisch aber nicht von seinem Vorgänger zu unterscheiden ist.

Ansonsten habe ich bei meinen Tests keinen großen Unterschied festgestellt. Alles funktioniert wie bisher.

Quellen/Links

📚 Coding mit KI

Ein halbes Jahr lang haben wir zu dritt intensiv getestet:

  • Was ist möglich?
  • Was ist sinnvoll?
  • Welche Anwendungsfälle gibt es, die über das reine Erstellen von Code hinausgehen?
  • Wo liegen die Grenzen?
  • Was sind die Risken?
  • Ist der KI-Einsatz ethisch vertretbar?

Wir haben mit ChatGPT und Claude gearbeitet und deren Ergebnisse mit lokalen Sprachmodellen (via Ollama, GPT4All, Continue, Tabby) verglichen. Wir haben Llama, Mistral/Mixtral, CodeLlama, Starcoder, Gemma und andere »freie« Sprachmodelle ausprobiert. Wir haben nicht nur Pair Programming getestet, sondern haben die KI-Werkzeuge auch zum Debugging, Refactoring, Erstellen von Unit-Tests, Design von Datenbanken, Scripting sowie zur Administration eingesetzt. Dabei haben wir mit verschiedenen Prompt-Formulierungen experimentiert und geben dazu eine Menge Tipps.

Der nächste Schritt beim Coding mit KI sind semi-selbstständige Level-3-Tools. Also haben wir uns OpenHands und Aider angesehen und waren von letzterem ziemlich angetan. Wir haben die Grenzen aktueller Sprachmodelle mit Retrieval Augmented Generation (RAG) und Text-to-SQL verschoben. Wir haben Scripts entwickelt, die mit KI-APIs kommunizieren und automatisiert dutzende oder auch hunderte von Code-Dateien verarbeiten.

Kurz und gut: Wir haben uns das Thema »Coding mit KI« so gesamtheitlich wie möglich angesehen und teilen mit Ihnen unsere Erfahrungen. Die Quintessenz ist vielleicht ein wenig banal: Es kommt darauf an. In vielen Fällen haben wir sehr gute Ergebnisse erzielt. Oft sind wir aber auch an die Grenzen gestoßen — umso eher, je spezieller die Probleme, je exotischer die Programmiersprachen und je neuer die genutzten Sprach-Features/Frameworks/Bibliotheken sind.

Was bleibt, ist die Überzeugung, dass an KI-Tools in der Software-Entwicklung kein Weg vorbei geht. Wer KI-Tools richtig einsetzt, spart Zeit, kürzer lässt es sich nicht zusammenfassen. Aber wer sie falsch einsetzt, agiert unverantwortlich und produziert fehlerhaften und unwartbaren Code!

Mehr Details zum (Vorwort, Leseprobe) finden Sie hier.

Ubuntu 24.10

Eigentlich hatte ich nicht vorgehabt, über Ubuntu 24.10 zu schreiben. Es ist kein LTS-Release, dramatische Neuerungen gibt es auch nicht. Aber dann ergab sich überraschend die Notwendigkeit, eine native Ubuntu-Installation auf meinem Notebook (Lenovo P1 gen1) durchzuführen. Außerdem feiert Ubuntu den 20. Geburtstag.

Also habe ich doch ein paar Worte (gar nicht so wenige) zum neuesten Release geschrieben. Der Text ist launiger geworden als beabsichtigt. Er konzentriert sich ausschließlich auf die Desktop-Nutzung, also auf Ubuntu für Büro-, Admin- oder Entwicklerrechner. Der Artikel bringt auch ein wenig meinen Frust zum Ausdruck, den ich mit Linux am Desktop zunehmend verspüre.

Installation

Ich lebe normalerweise in einer weitgehend virtuellen Linux-Welt. Auf meinem Arbeits-Notebook läuft zwar Arch Linux, aber neue Distributionen teste ich meistens in virtuellen Maschinen, viele meiner Server-Installationen befinden sich in Cloud-Instanzen, die Software-Entwicklung erfolgt in Docker-Containern. Überall Linux, aber eben meist eine (oder zwei) virtuelle Schichten entfernt.

Insofern ist es wichtig, hin und wieder auch eine »echte« Installation durchzuführen. Testkandidat war in diesem Fall ein fünf Jahre altes Lenovo P1 Notebook mit Intel-CPU und NVIDIA-GPU. Ich wollte Ubuntu auf eine noch leere 2-TB-SSD installieren, dabei aber nur 400 GiB nutzen. (Auch ein paar andere Distributionen verdienen im nächsten Jahr ihre Chance in der realen Welt …)

Weil ich nicht die ganze SSD nutzen möchte, werde ich zur manuellen Partitionierung gezwungen. So weit, so gut, allerdings fehlen dort die LVM-Funktionen. Somit ist es für Laien unmöglich, Ubuntu verschlüsselt in ein Logical Volume zu installieren. (Profis können sich Ihr Setup mit parted, pvxxx, vgxxx, lvxxx und cryptsetup selbst zusammenbasteln. Ich habe das aber nicht getestet.)

Bei der manuellen Partitionierung ist es unmöglich, die EI-Partition an den Beginn der Partitionstabelle zu stellen. Die /-Partition wird mit ‚Windows Boot Manager‘ beschriftet, warum auch immer. Die zweite SSD enthält eine schon vorhandene Arch-Linux-Installation.

Noch ein Ärgernis der manuellen Partitionierung: Das Setup-Programm kümmert sich selbst darum, eine EFI-Partition einzurichten. Gut! Aber auf einer aktuell leeren Disk wird diese kleine Partition immer NACH den anderen Partitionen platziert. Mir wäre lieber gewesen, zuerst 2 GiB EFI, dann 400 GiB für /. Solange es keine weiteren Partitionen gibt, hätte ich so die Chance, die Größe von / nachträglich zu ändern. Fehlanzeige. Im Übrigen hat das Setup-Programm auch die von mir gewählte Größe für die EFI-Partition ignoriert. Ich wollte 2 GiB und habe diese Größe auch eingestellt (siehe Screenshot). Das Setup-Programm fand 1 GiB ausreichend und hat sich durchgesetzt.

Zusammenfassung der Installationseinstellungen

Für die meisten Linux-Anwender sind die obigen Anmerkungen nicht relevant. Wenn Sie Ubuntu einfach auf die ganze Disk installieren wollen (real oder in einer virtuellen Maschine), oder in den freien Platz, der neben Windows noch zur Verfügung steht, dann klappt ja alles bestens. Nur Sonderwünsche werden nicht erfüllt.

Letzte Anmerkung: Ich wollte auf dem gleichen Rechner kürzlich Windows 11 neu installieren. (Fragen Sie jetzt nicht, warum …) Um es kurz zu machen — ich bin gescheitert. Das Windows-11-Setup-Programm aus dem aktuellsten ISO-Image glänzt in moderner Windows-7-Optik. Es braucht anscheinend zusätzliche Treiber, damit es auf einem fünf Jahre alten Notebook auf die SSDs zugreifen kann. (?!) Mit der Hilfe von Google habe ich entdeckt, dass er wohl die Intel-RST-Treiber für die Intel-CPU des Rechners haben will. Die habe ich mir runtergeladen, auf einem anderen Windows-Rechner (wird selbstverständlich vorausgesetzt) ausgepackt, auf einen zweiten USB-Stick gegeben und dem Windows-Installer zum Fraß vorgeworfen. Aber es half nichts. Die Treiber wären angeblich inkompatibel zu meiner Hardware. Ich habe fünf Stunden alles Mögliche probiert, das Internet und KI-Tools befragt, diverse Treiber von allen möglichen Seiten heruntergeladen. Aussichtslos. Ich habe mir dann von Lenovo ein Recovery-Image (Windows 10, aber egal) für mein Notebook besorgt. Es bleibt bei der Partitionierung in einem Endlos-Reboot hängen. Vielleicht, weil vor fünf Jahren 2-TB-SSDs unüblich waren? Also: Wer immer (mich selbst eingeschlossen) darüber jammert, wie schwierig eine Linux-Installation doch sei, hat noch nie versucht, Windows auf realer Hardware zu installieren. (Ich weiß, in virtuellen Maschinen klappt es besser.) Jammern über Einschränkungen bei der Ubuntu-Installation ist Jammern auf hohen Niveau. Der Ubuntu-Installer funktioniert ca. 100 Mal besser als der von Windows 11!

Das App Center

Obwohl ich bekanntermaßen kein großer Snap-Fan bin, habe ich mich entschieden, Ubuntu zur Abwechslung einmal so zu verwenden, wie es von seinen Entwicklern vorgesehen ist. Ich habe daher einige für mich relevante Desktop-Programme aus dem App Center in Form von Snap-Paketen installiert (unter anderem eine Vorabversion von Gimp 3.0, VS Code, den Nextcloud Client und LibreOffice). Auf den Speicherverbrauch habe ich nicht geschaut, Platz auf der SSD und im RAM ist ja genug.

Das Ubuntu App Center stellt ausschließlich Snap-Pakete von snapcraft.io zur Auswahl

Grundsätzlich hat vieles funktioniert, aber gemessen daran, wie lange es nun schon Snaps gibt, stören immer noch erstaunlich viele Kleinigkeiten:

  • Im Nextcloud-Client hatte ich im ersten Versuch Probleme bei der Verzeichnisauswahl. Diese folgte relativ zum Snap-Installationsverzeichnis statt relativ zu meinem Home-Verzeichnis. In der Folge scheiterte die Synchronisation wegen fehlender Schreibrechte. Das ließ sich relativ schnell beheben, hätte bei Einsteigern aber sicher einiges an Verwirrung verursacht. Noch ein Problem: Der Nextcloud wird NICHT automatisch beim Login gestartet, obwohl die entsprechende Option in den Nextcloud-Einstellungen gesetzt ist. Das muss manuell behoben werden (am einfachsten in gnome-tweaks alias Optimierungen im Tab Startprogramme).
Damit der Nextcloud-Client automatisch startet, nehmen Sie am besten »gnome-tweaks« (Optimierungen) zu Hilfe
  • Der Versuch, LibreOffice nach der Installation aus dem Ubuntu Store zu starten (Button Öffnen), führt direkt in den LibreOffice-Datenbank-Assistenten?! Weil ich keine Datenbank einrichten will, breche ich ab — damit endet LibreOffice wieder. Ich habe LibreOffice dann über das Startmenü (ehemals ‚Anwendungen‘) gestartet — funktioniert. Warum nicht gleich? Das nächste Problem tritt auf, sobald ich eine Datei öffnen möchte. Im Dateiauswahldialog drücke ich auf Persönlicher Ordner — aber der ist leer! Warum? Weil wieder alle Verzeichnisse (inkl. des Home-Verzeichnisses) relativ zum Snap-Installationsordner gelten. Meine Güte! Ja, ich kann mit etwas Mühe zu meinem wirklichen Home-Verzeichnis navigieren, aber so treibt man doch jeden Einsteiger zum Wahnsinn. Ab dem zweiten Start funktioniert es dann, d.h. LibreOffice nutzt standardmäßig mein ‚richtiges‘ Home-Verzeichnis.
Snap-Programme wissen nicht immer, wo ‚Home‘ ist.
  • Zwischendurch ist der App Center abgestürzt. Es kommt auch vor, dass das Programm plötzlich ohne ersichtlichen Grund einen CPU-Core zu 100 % nutzt. Das Programm beenden hilft.
  • Updates des App Center (selbst ein Snap-Paket), während dieser läuft, sind weiter unmöglich.

Es gibt auch gute Nachrichten: Ein Klick auf ein heruntergeladenes Debian-Paket öffnet das App Center, und dieses kann nun tatsächlich das Debian-Paket installieren. (Es warnt langatmig, wie unsicher die Installation von Paketen unbekannter Herkunft ist, aber gut. In gewisser Weise stimmt das ja.)

Nicht nur dass, wenn Sie den Suchfilter korrekt einstellen, können Sie im App Center sogar nach Debian-Paketen suchen und direkt installieren. Ganz intuitiv ist das nicht, aber es ist ein Fortschritt.

Sie können im App Center nun auch nach Debian-Paketen suchen

NVIDIA und Wayland

Ubuntu 24.10 ist die erste Ubuntu-Version, bei der meine NVIDIA-Grafikkarte out of the box nahezu ohne Einschränkungen funktioniert. Ich habe während der Installation darum gebeten, auch proprietäre Treiber zu installieren. Beim ersten Start werden dementsprechend die NVIDIA-Treiber geladen. Ab dem ersten Login ist tatsächlich Wayland aktiv und nicht wie (bei meiner Hardware in der Vergangenheit) X.org.

Die Installation proprietärer Treiber (inkl. NVIDIA) während der Installation ist ein Kinderspiel.
NVIDIA und Wayland kooperieren

Ich habe eine Weile in mit den Anzeige-Einstellungen gespielt: Zwei Monitore in unterschiedlichen Varianten, fraktionelle Skalierung (unscharf, aber prinzipiell OK) usw. Obwohl ich mir Mühe gegeben habe, das Gegenteil zu erreichen: Es hat wirklich jedes Monitor-Setup funktioniert. Ich würde das durchaus als Meilenstein bezeichnen. (Your milage may vary, wie es im Englischen so schön heißt. Alte Hardware ist beim Zusammenspiel mit Linux oft ein Vorteil.)

Na ja, fast alles: Ich war dann so übermütig und habe das System in den Bereitschaftsmodus versetzt. Am nächsten Tag wollte ich mich wieder anmelden. Soweit ich erkennen konnte, ist der Rechner gelaufen (die ganze Nacht??), er reagierte auf jeden Fall auf ping. (Ich war so leichtsinnig und hatte noch keinen SSH-Server installiert. Großer Fehler!) Auf jeden Fall blieben sowohl das Notebook-Display als auch der angeschlossene Monitor schwarz. Ich konnte drücken, wohin ich wollte, den Display-Deckel auf und zu machen, das HDMI-Kabel lösen und wieder anstecken — aussichtslos. Einzige Lösung: brutaler Neustart (Power-Knopf fünf Sekunden lang drücken). Und ich hatte schon gedacht, es wäre ein Wunder passiert …

Und noch ein kleines Detail: Drag&Drop-Operationen zicken (z.B. von Nautilus nach Chrome, Bilder in die WordPress-Mediathek oder Dateien in die Weboberfläche von Nextcloud oder Moodle hochladen). Das ist seit fünf Jahren ein Wayland-Problem. Es funktioniert oft, aber eben nicht immer.

Ubuntu Dock

Das Ubuntu-Dock wird durch eine Ubuntu-eigene Gnome Shell Extension realisiert, die im Wesentlichen Dash to Dock entspricht. (Tatsächlich handelt es sich um einen Klon/Fork dieser Erweiterung.)

In den Gnome-Einstellungen unter Ubuntu-Schreibtisch können allerdings nur rudimentäre Einstellungen dieser Erweiterung verändert werden. Das ist schade, weil es ja viel mehr Funktionen gibt. Einige davon (per Mausrad durch die Fenster wechseln, per Mausklick Fenster ein- und wieder ausblenden) sind aus meiner Sicht essentiell.

Um an die restlichen Einstellungen heranzukommen, müssen Sie das vorinstallierten Programm Erweiterungen starten. Von dort gelangen Sie in den vollständigen Einstellungsdialog der Erweiterung.

Der Weg in den erweiterten Einstellungsdialog für das Ubuntu Dock

20 Jahre Ubuntu

Ubuntu hat den Linux-Desktop nicht zum erhofften Durchbruch verholfen, aber Ubuntu und Canonical haben den Linux-Desktop auf jeden Fall deutlich besser gemacht. Geld ist mit dem Linux-Desktop wohl keines zu verdienen, das hat auch Canonical erkannt. Umso höher muss man es der Firma anrechnen, dass sie sich nicht ausschließlich den Themen Server, Cloud und IoT zuwendet, sondern weiter Geld in die Desktop-Entwicklung steckt.

Die Linux-Community hat Ubuntu und Canonical viel zu verdanken. Und so schließe ich mich diversen Glückwünschen aus dem Netz an und gratuliere Ubuntu ganz herzlich zum 20-jährigen Jubiläum. »Wir hätten dich sonst sehr vermisst«, heißt es in manchen Geburtstagsliedern. Wie sehr trifft das auf Ubuntu zu!

Fazit

Linux im Allgemeinen, Ubuntu im Speziellen funktioniert als Desktop-System gut, zu 90%, vielleicht sogar zu 95%. Seit Jahren, eigentlich schon seit Jahrzehnten. Na ja, zumindest seit einem Jahrzehnt.

Aber die fehlenden paar Prozent — an denen scheint sich nichts zu ändern. Und das ist schade, weil es ja so dringend eine Alternative zum goldenen Käfig (macOS) bzw. dem heillosen Chaos (Windows, bloatware included TM) bräuchte.

Profis können sich mit Linux als Desktop-System arrangieren und profitieren von den vielen Freiheiten, die damit verbunden sind. Aber es fällt mir seit Jahren immer schwerer, Linux außerhalb dieses Segments zu empfehlen.

Linux hält unsere (IT-)Welt server-seitig am Laufen. Praktisch jeder Mensch, der einen Computer oder ein Smartphone verwendet, nutzt täglich Dienste, die Linux-Server zur Verfügung stellen. Warum ist der kleine Schritt, um Linux am Desktop zum Durchbruch zu verhelfen, offenbar zu groß für die Menschheit (oder die Linux-Entwicklergemeinde)?

Links/Quellen

Ubuntu 24.04 mit UTM unter macOS ausführen

Vielleicht wollen oder können Sie Ubuntu nicht direkt auf Ihr Notebook oder Ihren PC installieren. Dennoch interessieren Sie sich für Linux oder brauchen eine Installation für Schule, Studium oder Software-Entwicklung. Diese Artikelserie fasst drei Wege zusammen, Ubuntu 24.04 virtuell zu nutzen:

  • Teil I: im Windows Subsystem for Linux (WSL)
  • Teil II: mit VirtualBox (Windows mit Intel/AMD-CPU)
  • Teil III (dieser Text): mit UTM (macOS ARM)

In diesem Artikel gehe ich davon aus, dass Sie einen Mac mit ARM-CPU (M1, M2 usw.) verwenden. Für ältere Modelle mit Intel-CPUs gelten z.T. andere Details, auf die ich hier nicht eingehe. Insbesondere müssen Sie dann eine ISO-Datei für x86-kompatible CPUs verwenden, anstatt, wie hier beschrieben, eine ARM-ISO-Datei!

Virtualisierungssysteme für macOS ARM

Sie haben die Wahl:

  • Parallels Desktop: gut, aber wegen jährlicher Update-Pflicht sehr teuer
  • VMWare Fusion: kostenlos (for personal use), aber gut versteckter Download (erfordert vorher Registrierung bei Broadcom, danach lange Suche), verwirrende Bedienung, unklare Zukunft

  • UTM: Open-Source-Programm, kostenloser Download oder 10 EUR über App Store (einziger Unterschied: automatische Updates)

  • VirtualBox: kostenlos, aber aktuell erst als Beta-Version verfügbar und extrem langsam

Ich konzentriere mich hier auf UTM, der aus meiner Sicht überzeugendsten Lösung.

UTM

UTM ist ein Open-Source-Programm, das nur als Schnittstelle zu zwei Virtualisierungssystemen dient: dem aus der Linux-Welt bekannten QEMU-System sowie dem Apple Hypervisor Virtualization Framework (integraler Bestandteil von macOS seit Version 13, also seit Herbst 2022). UTM ist also lediglich eine grafische Oberfläche und delegiert die eigentliche Virtualisierung an etablierte Frameworks.

Sie können UTM um ca. 10 EUR im App Store kaufen und so die UTM-Entwickler ein wenig unterstützen, oder das Programm kostenlos von https://mac.getutm.app/ herunterladen und (vollkommen unkompliziert!) selbst installieren.

Sodann können Sie mit UTM virtuelle Maschinen mit Linux, Windows und macOS ausführen. Ich behandle hier ausschließlich Linux.

QEMU oder Apple Virtualization?

Wenn Sie in UTM eine neue virtuelle Maschine für Linux einrichten, haben Sie die Wahl zwischen zwei Virtualisierungssystemen: QEMU und Apple Virtualization. Welches ist besser?

  • Die QEMU-Variante bietet viel mehr Konfigurationsmöglichkeiten rund um die Netzwerkeinbindung und das Grafiksystem. Allerdings braucht die virtuelle Maschine doppelt so viel RAM wie vorgesehen: Wenn Sie eine VM mit 4 GB RAM einrichten, gehen beim Betrieb 8 GB RAM im macOS-Arbeitsspeicher verloren! macOS ist gut dabei, ungenutzte RAM-Teile zu komprimieren oder auszulagern, dennoch ist diese RAM-Verschwendung Wahnsinn. (Das gleiche Problem habe ich übrigens auch bei Tests mit VMWare Fusion festgestellt.)
  • Bei Apple Virtualization funktioniert die Speicherverwaltung, d.h. eine virtuelle Maschine mit 4 GB RAM braucht tatsächlich nur 4 GB RAM. (Das sollte ja eigentlich selbstverständlich sein …) Dafür haben Sie bei der Netzwerkkonfiguration kaum Wahlmöglichkeiten. Die VMs werden immer über eine Netzwerkbrücke in das lokale Netzwerk integriert. Es gibt zwar zwei Optionen, Gemeinsames Netzwerk und Bridge-Modus. Soweit ich es nachvollziehen kann, reduziert Gemeinsames Netzwerk nur die Optionen für den Bridge-Modus, ändert aber daran nichts. Das Apple Virtualization Framework würde auch NAT unterstützen, aber UTM stellt diese Option nicht zur Wahl.

In der Oberfläche von UTM wird die Verwendung von Apple Virtualization als experimentell bezeichnet. Ich habe bei meinen Tests leider mit beiden Frameworks gelegentliche Abstürze von virtuellen Maschinen erlebt. Ich würde beide Frameworks als gleichermaßen stabil betrachten (oder auch instabil, je nach Sichtweise; unter Linux mit QEMU/KVM sind mir Abstürze unbekannt). Persönlich verwende ich, vor allem um RAM zu sparen, für neue VMs nur mehr die Apple Virtualization. Glücklicherweise passt der Bridge Modus gut zu meinen Netzwerkanforderungen.

Wenn Sie VMs mit macOS oder Windows erstellen, entfällt die Wahlmöglichkeit. Windows VMs können nur durch QEMU ausgeführt werden, macOS VMs nur mit dem Apple Virtualization Framework.

Ubuntu installieren

Die erste Hürde hin zur Ubuntu-Installation besteht darin, ein ARM-ISO-Image zu finden. Auf den üblichen Download-Seiten finden Sie nur die x86-Variante von Ubuntu Desktop. Es gibt aber sehr wohl ein ARM-Image! Es ist auf der Website cdimage.ubuntu.com versteckt (noble-desktop-arm64.iso):

https://cdimage.ubuntu.com/noble/daily-live/current

In UTM klicken Sie auf den Plus-Button, um eine neue virtuelle Maschine einzurichten. Danach wählen Sie die folgenden Optionen:

  • Virtualisieren
  • Linux
  • Option Use Apple Virtualiuation, Button Durchsuchen, um die ISO-Datei (das Boot-ISO-Abbild) auszuwählen
  • Speicher: 4 GB ist zumeist eine sinnvolle Einstellung
  • Prozessorkerne: ich verwende zumeist 2, die Einstellung Standard ist auch OK
  • Datenspeicher (Größe des Disk-Images): nach Bedarf, 25 GB sind in meiner Erfahrung das Minimum
  • Freigegebener Ordner: sollte die Nutzung eines macOS-Verzeichnisses innerhalb der virtuellen Maschine ermöglichen, funktioniert meines Wissens aber nur, wenn die virtuelle Maschine selbst macOS ist
  • Zusammenfassung: hier geben Sie der virtuellen Maschine einen Namen
Setup der neuen virtuellen Maschine in UTM
Einstellung des Namens der virtuellen Maschine

Nachdem Sie alle Einstellungen gespeichert haben, starten Sie die virtuelle Maschine. Nach ca. 30 Sekunden sollte der Desktop mit dem Installationsprogramm erscheinen (erster Dialog: Welcome to Ubuntu). Falls das Installationsprogramm je nach Monitor auf einem riesigen Desktop winzig dargestellt wird, öffnen Sie rechts oben über das Panel-Menü die Einstellungen (Zahnrad-Icon), suchen das Dialogblatt Displays und wählen eine kleinere Bildschirmauflösung aus.

Im Installationsprogramm stellen Sie nun die gewünschte Sprache ein. Bei der Einstellung des Tastaturlayouts wählen Sie Deutsch und die Tastaturvariante Deutsch Macintosh, damit die Mac-Tastatur unter Ubuntu richtig funktioniert. Alle weiteren Einstellungen erfolgen wie bei einer Installation unter VirtualBox, siehe Ubuntu 24.04 in VirtualBox ausführen. Sie brauchen keine Software von Drittanbietern, können aber die Option Unterstützung für zusätzliche Medieformate aktivieren.

Ausführung des Ubuntu-Installationsprogramms

Nach Abschluss aller Setup-Dialoge dauert die Installation ca. fünf Minuten. Da während der Installation manche Pakete aus dem Internet heruntergeladen werden, ist die Dauer der Installation auch von der Geschwindigkeit Ihres Internetzugangs abhängig.

Ubuntu nutzen

Nach dem ersten Neustart erscheint der Ubuntu-Desktop. Wieder kann es je nach Monitor passieren, dass die Grafikauflösung in der virtuellen Maschine zu groß ist. Öffnen Sie das Programm Einstellungen, dort das Dialogblatt Anzeigegeräte und stellen Sie eine passende Auflösung ein. Im Unterschied zu anderen Virtualisierungsprogramme ändert sich die Auflösung nicht automatisch, wenn Sie das UTM-Fenster verändern. Stattdessen wird der im Fenster angezeigte Inhalt skaliert.

Damit sich die Maus in der virtuellen Maschine wie unter macOS verhält, aktivieren Sie in Einstellungen/Maus und Tastfeld die Option Natürliche Rollrichtung.

Um Text zwischen macOS und Ubuntu auszutauschen, können Sie die Zwischenablage verwenden. Dazu muss weder zusätzliche Software installiert noch irgendeine Konfiguration verändert werden.

Zum Austausch von Dateien verwenden Sie am einfachsten scp.

Ubuntu 24.04 (ARM) läuft unter macOS

Speicherort der virtuellen Maschinen

UTM speichert die virtuellen Maschinen im Verzeichnis Library/Containers/com.utmapp.UTM. In der Regel ist es nicht zweckmäßig, die riesigen Image-Dateien in das TimeMachine-Backup mit aufzunehmen. Fügen Sie daher bei den TimeMachine-Einstellungen eine entsprechende Regel hinzu.

Quellen/Links

Ubuntu 24.04 in VirtualBox ausführen

Vielleicht wollen oder können Sie Ubuntu nicht direkt auf Ihr Notebook oder Ihren PC installieren. Dennoch interessieren Sie sich für Linux oder brauchen eine Installation für Schule, Studium oder Software-Entwicklung. Diese Artikelserie fasst drei Wege zusammen, Ubuntu 24.04 virtuell zu nutzen:

  • Teil I: im Windows Subsystem for Linux (WSL)
  • Teil II (dieser Text): mit VirtualBox (Windows mit Intel/AMD)
  • Teil III: mit UTM (macOS ARM)

VirtualBox

VirtualBox war lange Zeit das dominierende Virtualisierungsprogramm für Privatanwender: kostenlos (wenn auch nicht vollständig Open Source), funktionell, relativ einfach zu bedienen und für alle drei relevanten Betriebssysteme verfügbar (Windows, macOS, Linux).

Diese Rolle ist zuletzt stark ins Wanken gekommen. Aus meiner Sicht gibt es drei gravierende Probleme:

  • VirtualBox unter Windows (mit x86-kompatiblen CPUs) litt in den vergangenen Jahren immer wieder unter massiven Stabilitätsproblemen. Möglicherweise wurde diese durch Inkompatibilitäten mit dem Microsoft-Hypervisor (Hyper-V) ausgelöst — wirklich schlüssig war es für mich nie. Wenn VirtualBox auf zehn Studenten-Notebooks mit Windows funktioniert, kann dieselbe Version auf dem elften Notebook Probleme bereiten, die nur schwer nachzuvollziehen sind.
  • Das zweite Problem besteht darin, dass VirtualBox Intel/AMD-CPUs voraussetzt. Zwar gibt es eine Beta-Version von VirtualBox für Macs mit M1/M2/…-CPU, diese ist aber noch unerträglich langsam. Für Windows oder Linux auf ARM-Hardware gibt es gar keine Angebote.

  • Schließlich hatte ich zuletzt immer wieder Schwierigkeiten mit den unzähligen Zusatzfunktionen von VirtualBox. Die Installation der Guest Tools hakt, das Grafiksystem zeigt Darstellungsfehler, die geteilten Verzeichnisse haben in der VM die falschen Zugriffsrechte usw. Weniger wäre mehr.

Aktuell gibt es mit dem ganz frischen Release von VirtualBox 7.1.0) noch ein Problem: Die Netzwerkgeschwindigkeit in den virtuellen Maschinen ist unerträglich langsam. Das Problem ist bekannt und wird hoffentlich demnächst behoben. Bis dahin empfehle ich Ihnen, mit Version 7.0.20 zu arbeiten. Ich habe die in diesem Artikel beschriebene Installation mit 7.1.0 durchgeführt (und damit auch die Screenshots erstellt), bin aber im Anschluss zurück auf die alte Version umgestiegen. Das Format der virtuellen Maschinen hat sich zum Glück nicht geändert. Ältere VirtualBox-Downloads finden Sie hier.

Wenn ich Sie bis jetzt nicht abgeschreckt habe, erläutere ich Ihnen im Folgenden die Installation von Ubuntu 24.04 in einer virtuellen Maschine, die in VirtualBox 7.0 unter Windows 11 (für Intel/AMD) läuft.

Ubuntu installieren

Zuerst müssen Sie VirtualBox installieren. Danach brauchen Sie zur Installation von Ubuntu das ISO-Image von Ubuntu, das Sie von der Ubuntu-Download-Seite herunterladen.

Als nächstes richten Sie in VirtualBox mit dem Button Neu eine neue virtuelle Maschine ein. Im ersten Blatt des Setup-Dialogs geben Sie der virtuellen Maschine einen Namen und wählen die ISO-Datei aus. VirtualBox erkennt selbst, dass die ISO-Datei Ubuntu enthält, und stellt Typ, Subtyp und Version selbst ein.

VirtualBox kann bei Ubuntu eine Unbeaufsichtigte Installation durchführen. Dazu geben Sie im folgenden Dialogblatt den Benutzernamen, das Passwort und den gewünschten Hostnamen an. Sie ersparen sich mit einer unbeaufsichtigten Installation die Bedienung des Ubuntu-Installationsprogramms. Allerdings hat diese Installationsvariante den Nachteil, dass Ubuntu nach der Installation englische Menüs anzeigt und ein englisches Tastaturlayout verwendet. Deswegen ist es aus meiner Sicht sinnvoll, die Option Unbeaufsichtigte Installation überspringen zu aktivieren.

Die unbeaufsichtigte Installation hat mehr Nach- als Vorteile

Im Dialogblatt Hardware sollten Sie der virtuellen Maschine zumindest 4 GB RAM und zwei CPU-Cores zuweisen. Die vorgeschlagenen 2 GB RAM sind definitiv zu wenig und führen dazu, dass nicht einmal der Start der virtuellen Maschine möglich ist!

Im Dialogblatt Festplatte stellen Sie ein, wie groß die virtuelle Disk sein soll. 25 GB ist aus meiner Sicht das Minimum, um Ubuntu ein wenig auszuprobieren. Je nach Verwendungszweck brauchen Sie aber natürlich mehr Speicherplatz.

Fertigstellen beendet den Dialog. Bevor Sie mit der Installation starten, sollten Sie nun mit Ändern noch zwei Einstellungen der virtuellen Maschine anpassen:

  • Allgemein/Erweitert/Gemeinsame Zwischenablage = bidirektional
  • Anzeige/Bildschirm/Grafikspeicher = mindestens 32 MB, ich empfehle das Maximum von 128 MB

Optionale Einstellungen für die virtuelle Maschine. Dem Grafiksystem sollten zumindest 32 MB RAM zur Verfügung stehen.

Ein Doppelklick auf das VM-Icon startet die virtuelle Maschine. Nach ca. einer halben Minute erscheint der Ubuntu-Desktop mit dem Installationsprogramm. Unter Umständen wird vorher im Textmodus die beunruhigende Fehlermeldung * vmwgfx seems to be running on an unsupported hypervisor* angezeigt. Zumindest bei meinen Tests startet das Grafiksystem wenig später dennoch fehlerfrei.

Im Installationsprogramm stellen Sie in den ersten Schritten die gewünschte Sprache und das Tastaturlayout ein. Sie geben an, dass Sie Ubuntu installieren (und nicht nur ausprobieren) möchten, und entscheiden sich für die interaktive Standard-Installation. (Wenn Sie gleich auch Gimp, LibreOffice usw. haben möchten, ist Vollständige Installation die bessere Wahl.)

Mit der »Standard-Installation« werden nur die wichtigsten Programme installiert. Weitere Software können Sie später installieren.

Im nächsten Dialogblatt haben Sie die Option, zusätzliche Treiber sowie Audio- und Video-Codecs zu installieren. Treiber brauchen Sie in der virtuellen Maschine keine, und die fehlenden Codecs können Sie gegebenenfalls später immer noch installieren (sudo apt install ubuntu-restricted-extras).

Im Dialogblatt Art der Installation geht es um die Partitionierung der virtuellen Disk sowie um das Einrichten der Dateisysteme für Ubuntu. Weil Sie Ubuntu in eine virtuelle Maschine installieren, müssen Sie keinerlei Rücksicht auf andere Betriebssysteme nehmen und können sich einfach für die Option Festplatte löschen und Ubuntu installieren entscheiden.

In virtuellen Maschinen ist eine manuelle Partitionierung des Datenträgers glücklicherweise überflüssig

Auf der nächsten Seite geben Sie Ihren Namen, den Hostname, den Account-Namen sowie das gewünschte Passwort an. Das nächste Dialogblatt betrifft die Zeitzone, die normalerweise automatisch korrekt eingestellt wird. Zuletzt werden die wichtigsten Einstellungen nochmals zusammengefasst. Installieren startet den Installations-Prozess, der je nach Rechnergeschwindigkeit einige Minuten dauert.

Personalisierung der Installation

Ubuntu nutzen

Nach Abschluss der Installation starten Sie die virtuelle Maschine neu und können Ubuntu dann beinahe wie bei einer realen Installation nutzen. Die Auflösung der virtuellen Maschine ändern Sie unkompliziert innerhalb von Ubuntu im Programm Einstellungen, Modul Anzeigegeräte. Wenn Sie einen hochauflösenden Bildschirm verwenden, kann es außerdem zweckmäßig sein, den skalierten Modus zu aktivieren (Anzeige / Skalierter Modus im Menü des Fensters der virtuellen Maschine).

Die virtuelle Maschine verwendet Wayland als Grafiksystem

Installation der VirtualBox-Gasterweiterungen

Um den Datenaustausch zwischen Windows und Ubuntu zu erleichtern, können Sie die VirtualBox-Gasterweiterungen installieren. Dazu sind zwei Schritte erforderlich:

Zuerst führen Sie im Fenster der virtuellen Maschine Geräte / Gasterweiterungen einlegen aus.

Anschließend geben Sie in einem Terminalfenster die folgenden Kommandos ein:

sudo apt update
sudo apt install build-essential
sudo /media/<accountname>/VBox_GAs_nnn/VBoxLinuxAdditions-arm64.run

Sie gewinnen damit die folgenden Features:

  • Die Auflösung des Grafiksystems von Ubuntu wird automatisch an die Größe des Fensters der virtuellen Maschine angepasst.
  • Sie können über die Zwischenablage Text zwischen Windows und Ubuntu austauschen. (Dazu muss außerdem der bidirektionale Modus der Zwischenablage aktiviert werden: im VM-Fenster mit Geräte / Gemeinsame Zwischenablage / Bidirektional.

  • Sie können über ein gemeinsames Verzeichnis Dateien zwischen Ubuntu und Windows austauschen (Konfiguration siehe unten).

Gemeinsames Verzeichnis zum Dateiaustausch einrichten

Um Dateien zwischen Ubuntu und Windows auszutauschen, richten Sie am besten ein gemeinsames Verzeichnis ein. Drei Schritte sind erforderlich:

  • Die VirtualBox-Gasterweiterungen sind erforderlich.
  • Im Menü des Fensters der virtuellen Maschine führen Sie Geräte / Gemeinsame Ordner / Gemeinsame Ordner aus und wählen ein Windows-Verzeichnis (es kann auch Ihr persönliches Verzeichnis sein). Aktivieren Sie die Optionen Automatisch einbinden und Permanent erzeugen.

  • Zuletzt müssen Sie in einem Terminal-Fenster in Ubuntu Ihren Account der vboxsf-Gruppe zuordnen:

sudo usermod -a -G vboxsf $USER

Damit das usermod-Kommando wirksam wird, müssen Sie die virtuelle Maschine neustarten. Sie finden das gemeinsame Verzeichnis danach direkt im Datei-Manager.

Gemeinsamen Ordner zum Dateiaustausch zwischen Windows und der virtuellen Maschine einrichten
Der gemeinsame Ordner wird im Dateimanager angezeigt. Wenn Sie darauf nicht zugreifen können, haben Sie »usermod« vergessen. Für Experten zeigt »findmnt« die Details des Mount-Verzeichnisses.

Netzwerkkonfiguration und SSH-Zugriff

Wenn ich auf Kommandoebene arbeite, bediene ich meine virtuellen Maschinen gerne über SSH. Unter Ubuntu muss dazu der SSH-Server installiert werden, was mit sudo apt install openssh-server rasch gelingt.

Das reicht aber noch nicht: VirtualBox gibt der virtuellen Maschine standardmäßig mittels Network Address Translation Zugriff auf die Netzwerkverbindung des Host-Computers. Die virtuelle Maschine ist aber im Netzwerk des Hosts unsichtbar, eine SSH-Verbindung ist unmöglich.

Es gibt zwei Auswege. Einer besteht darin, in den Netzwerkeinstellungen der virtuellen Maschine die Option Netzwerkbrücke zu aktivieren. Damit wird die virtuelle Maschine einfach zu einem Mitglied im lokalen Netzwerk. Zuhause funktioniert das gut (einfach ssh name@<ubuntu_hostname> ausführen), in öffentlichen WLANs dagegen leider nicht.

Die Alternative heißt Port-Weiterleitung. Dazu führen Sie im Fenster der virtuellen Maschine Geräte / Netzwerk / Netzwerk-Einstellungen aus, aktivieren das Tab Experte und klappen bei Adapter 1 den Bereich Erweitert aus und klicken auf Port-Weiterleitung. Nun richten Sie eine neue Regel ein, die Port 2222 des Hosts (127.0.0.1) mit Port 22 der virtuellen Maschine (10.0.2.15) verbindet.

Port-Weiterleitung zwischen Port 22 der virtuellen Maschine und Port 2222 des eigenen Rechners einrichten

Nachdem Sie die Einstellungen gespeichert haben (ein Neustart der virtuellen Maschine ist nicht notwendig), können Sie im Terminal von Windows mit dem folgenden Kommando eine SSH-Verbindung zur virtuelle Maschine herstellen:

ssh -p 2222 name@localhost

Wichtig ist dabei die Option -p 2222. ssh soll nicht wie üblich Port 22 verwenden, sondern eben Port 2222. Wichtig ist auch, dass Sie als Zieladresse localhost angeben. Aufgrund der Port-Weiterleitung landen Sie wunschgemäß in der virtuellen Maschine. Anstelle von name geben Sie Ihren Ubuntu-Account-Namen an.

Quellen/Links

Ubuntu 24.04 im Windows Subsystem for Linux (WSL)

Vielleicht wollen oder können Sie Ubuntu nicht direkt auf Ihr Notebook oder Ihren PC installieren. Dennoch interessieren Sie sich für Linux oder brauchen eine Installation für Schule, Studium oder Software-Entwicklung. Diese Artikelserie fasst drei Wege zusammen, Ubuntu 24.04 virtuell zu nutzen:

  • Teil I (dieser Text): im Windows Subsystem for Linux (WSL)
  • Teil II: mit VirtualBox (Windows mit Intel/AMD)
  • Teil III: mit UTM (macOS ARM): mit UTM (macOS ARM)

Windows Subsystem für Linux

Mit WSL hat Microsoft einen Weg geschaffen, Linux im Textmodus unkompliziert unter Windows auszuführen. Diese Variante ist dann empfehlenswert, wenn Sie unter Windows typische Linux-Werkzeuge (die Shell bash, Kommandos wie find und grep usw.) nutzen möchten oder wenn Sie ohne Docker oder virtuelle Maschinen Server-Dienste wie Apache, nginx etc. ausprobieren möchten.

Als erstes müssen Sie sicherstellen, dass im Konfigurationsprogramm Windows-Features aktivieren oder deaktivieren die Optionen Hyper-V und Windows-Subsystem für Linux aktiviert sind. Alternativ können Sie WSL auch im Microsoft Store installieren.

WSL aktivieren

Im zweiten Schritt gehen Sie in den Microsoft Store und suchen nach Ubuntu 24.04. (Passen Sie auf, dass Sie keine alte Version verwenden, die vorher gereiht ist.) Ubuntu 24.04 ist kostenlos. Der Installationsumfang ist mit 350 MByte für eine Linux-Distribution relativ klein. Sobald Sie Öffnen anklicken, erscheint ein Terminal-Fenster. Nach ein paar Sekunden müssen Sie einen Benutzernamen und ein Passwort angeben. Dieses Passwort brauchen Sie später, um administrative Arbeiten zu erledigen (z.B. sudo apt install xxx).

Erster Start von Ubuntu 24.04 unter WSL

In Zukunft können Sie Ubuntu 24.04 im Startmenü oder in der Auswahlliste des Terminal-Programms starten. Als ersten Schritt in der neuen Shell-Umgebung sollten Sie ein Update durchführen (also die Kommandos sudo apt update und sudo apt full-upgrade).

Innerhalb von Ubuntu können Sie über den Pfad /mnt/c auf das Windows-Dateisystem zugreifen. Umgekehrt finden Sie das Linux-Dateisystem im Explorer unter dem Eintrag Linux.

Zugriff auf das Linux-Dateisystem im Explorer

WSL ist für den Betrieb von Linux im Textmodus optimiert. Seit 2021 besteht mit WSLg aber prinzipiell die Möglichkeit, einzelne Programme im Grafikmodus zu installieren und auszuführen:

sudo apt install gnome-text-editor
gnome-text-editor &

Meine Erfahrungen mit diesem Feature waren aber nicht überragend. Wenn Sie Ubuntu als Desktop-System im Grafikmodus nutzen möchten, verwenden Sie dazu besser VirtualBox oder ein anderes Virtualisierungssystem.

WSL1, wenn Windows in einer virtuellen Maschine läuft

Aus technischer Sicht gibt es zwei ganz unterschiedliche Varianten von WSL. Standardmäßig kommt WSL2 zum Einsatz. Dabei wird der Linux-Kernel durch das Virtualisierungssystem Hyper-V ausgeführt. In manchen Situationen steht Hyper-V aber nicht zur Verfügung — z.B. wenn Windows selbst in einer virtuellen Maschine läuft (unter Linux oder macOS). In solchen Fällen ist WSL1 ein attraktiver Ausweg. Bei WSL1 kümmert sich ein ganzes Framework von Funktionen um die Kompatibilität zwischen Windows und Linux. WSL1 ist der technisch kompliziertere Weg, weil (fast) alle Linux-Grundfunktionen ohne Virtualisierung nachgebildet wurden.

Um Ubuntu 24.04 unter WSL1 auszuführen, führen Sie die folgenden Kommandos im Terminal aus:

wsl.exe --set-default-version 1
wsl.exe --install -d Ubuntu-24.04

WSL1 hat im Vergleich zu WSL2 einige Nachteile: langsameres I/O, älterer Kernel, keine Grafikfunktionen. Für viele Aufgaben — etwas zum Erlernen grundlegender Linux-Kommandos oder zur bash-Programmierung — funktioniert WSL1 aber genauso gut wie WSL2.

Der aus meiner Sicht größte Nachteil von WSL1 besteht darin, dass systemd nicht funktioniert. Hintergrunddienste wie cron stehen nicht zur Verfügung und können gar nicht oder nur über komplizierte Umwege genutzt werden. Ein wichtiger Teil dessen, was ein komplettes Linux-System ausmacht, fehlt.

Hier läuft Windows für ARM im Virtualisierungssystem UTM unter macOS. In der virtuellen Maschine ist wiederum Ubuntu 24.04 (auch für ARM) per WSL1 installiert.

Quellen und Links

GPIO-Ärger auf dem Raspberry Pi 5

(Aktualisiert 13.9.2024) Mit der Auslieferung des Raspberry Pi 5 im Herbst 2024 hat sich bei einigen Low-Level-Tools der GPIO-Zugriff geändert: Für die Modelle bis einschließlich Raspberry Pi 4 erfolgt der GPIO-Zugriff über chip0 bzw. /dev/gpiochip0. Beim Raspberry Pi musste dagegen chip4 bzw. /dev/gpiochip4 verwendet werden. Scripts, die universell auf alten und neuen Geräten laufen sollten, brauchten eine entsprechende Fallunterscheidung.

Mit Kernel 6.6.47, der mittlerweile standardmäßig als Update unter Raspberry Pi OS installiert wird, ändert sich wieder alles! Auch beim Raspberry Pi 5 muss nun /dev/gpiochip0 verwendet werden. Eine Referenz aller internen GPIO-Nummern gibt cat /sys/kernel/debug/gpio.

Die Änderung betrifft unter anderem:

  • Python: gpiozero, lgpio, gpiod
  • Bash: gpioset, gpioget
  • C: lgpio, libgpiod, wiringpi

Scripts, die mit diesen Modulen bzw. Bibliotheken verfasst wurden, müssen geändert werden (Umstellung von GPIO-Chip 4 auf GPIO-Chip 0). Im Folgenden habe ich diesbezüglich Anleitungen für diverse Fälle zusammengefasst.

13.9.2024: Mit dem neuesten Update von Raspberry Pi OS wird ein Link von /dev/gpiochip4 auf /dev/gpiochip0 eingerichtet, wodurch die Auswirkungen des veränderten Kernels in den meisten Fällen nicht mehr spürbar sind.

ls -l /dev/gpiochip*

crw-rw---- 1 root gpio 254,  0 13. Sep 08:39 /dev/gpiochip0
crw-rw---- 1 root gpio 254, 10 13. Sep 08:39 /dev/gpiochip10
crw-rw---- 1 root gpio 254, 11 13. Sep 08:39 /dev/gpiochip11
crw-rw---- 1 root gpio 254, 12 13. Sep 08:39 /dev/gpiochip12
crw-rw---- 1 root gpio 254, 13 13. Sep 08:39 /dev/gpiochip13
lrwxrwxrwx 1 root root       9 13. Sep 08:39 /dev/gpiochip4 -> gpiochip0

Von gpiozero gibt es mittlerweile eine aktualisierte Version, die das richtige Chip-Device erkennt.

Python-Scripts mit gpiozero

Beim Start derartiger Scripts auf dem Raspberry Pi 5 mit dem aktuellen Kernel (>= 6.6.47) tritt die Fehlermeldung can not open gpiochip auf. Das Script bricht ab. Der Fehler ist bekannt, es wird demnächst eine neue Version des Python-Modules geben. Bis dahin ist es am einfachsten, das Script wie folgt zu starten:

RPI_LGPIO_CHIP=0 ./gpiozero-led.py

Alternativ führen Sie export RPI_LGPIO_CHIP=0 aus und fügen diese Anweisung auch in /home/your-account/.bashrc ein. Eine weitere Möglichkeit ohne die externe Definition von Umgebungsvariablen besteht darin, am Beginn Ihres Python-Scripts die folgende Zeile einzubauen:

import os 
os.environ['RPI_LGPIO_CHIP']='0'

Im gpiozero-Issue ist auch von PWM-Problemen zu lesen, die sich selbst mit RPI_LGPIO_CHIP=0 nicht lösen lassen. Das kann ich nicht bestätigen. Mein PWM-Test-Script gibt zwar eine Warnung aus, funktioniert aber.

Python-Scripts mit lgpio

Wenn Sie in Ihrem Python-Script das lgpio-Modul verwenden, müssen Sie den Handle nun IMMER mit gpiochip_open(0) öffnen, also:

# alle Raspberry-Pi-Modelle mit aktuellen Kernel >= 6.6.45
handle = lgpio.gpiochip_open(0)

# Raspberry Pi 5 mit Kernel < 6.6.45
# handle = lgpio.gpiochip_open(4)

Python-Scripts mit gpiod

Wenn Sie in Ihrem Python-Script das gpiod-Modul verwenden, müssen Sie die Initialisierung nun IMMER mit 'gpiochip0' durchführen, also:

chip = gpiod.Chip('gpiochip0')     # alle Modelle mit Kernel >= 6.6.45
# chip = gpiod.Chip('gpiochip4')   # Raspberry Pi 5 mit Kernel < 6.6.45

pinout-Kommando

Auch das Kommando pinout liefert zur Zeit Fehlermeldungen (can’t connect to pigpio at localhost sowie Unable to initialize GPIO Zero). Hinter den Kulissen handelt es sich bei dem Kommando um ein Python-Script, das gpiozero verwendet. Bis dieses Modul aktualisiert wird, hilft der oben schon erwähnte Trick mit RPI_LGPIO_CHIP=0 weiter, also:

RPI_LGPIO_CHIP=0 pinout

bash-Scripts mit gpioset, gpioget und gpiomon

Bei den genannten Kommandos übergeben Sie als ersten Parameter die Chip-Nummer. Ab Kernel 6.6.45 lautet diese IMMER 0, also z.B.:

chip=0
gpioset $chip 7=1   # GPIO 7 (Pin 26) auf "high" stellen
gpioset $chip 7=0   # GPIO 7 (Pin 26) auf "low" stellen

bash-Scripts mit pinctrl

Hier ändert sich nichts. pinctrl war schon in der Vergangenheit in der Lage, die richtige Chip-Nummer selbst zu erkennen, und das funktioniert weiterhin. Großartig!

pinctrl set 7 op dh   # LED an Pin 26 ein
pinctrl set 7 op dl   # LED an Pin 26 aus

C-Programme mit lgpio

Ab Kernel 6.6.45 müssen Sie IMMER die Chip-Nummer 0 verwenden, also:

#define CHIP 0
...
h = lgGpiochipOpen(CHIP);  // open connection to I/O chip

C-Programme mit gpiod

Ab Kernel 6.6.45 müssen Sie IMMER "gpiochip0" verwenden, also:

char *chipname = "gpiochip0";
chip = gpiod_chip_open_by_name(chipname);
...

wiringpi

Die von Gordon Drogon entwickelte wiringpi-Bibliothek ist seit vielen Jahren veraltet (gilt bis Version 2.5).

2024 hat der Grazer Computer Club die Wartung der Bibliothek übernommen. Damit ist diese Bibliothek (jetzt in Version 3.0) wieder verwendbar! Weitere Informationen sowie Installationshinweise gibt es auf der GitHub-Projektseite:

https://github.com/WiringPi/WiringPi

Persönliche Anmerkung

Diese ganze Angelegenheit ist ein einziges Trauerspiel. Dass beim Raspberry Pi 5 anfänglich /dev/gpiochip4 als interne GPIO-Schnittstelle verwendet wurde (und nicht von Anfang an /dev/gpiochip0 wie bei früheren Raspberry-Pi-Modellen), war schon eine äußerst fragwürdige Entscheidung. Aber die Schnittstelle jetzt, fast ein Jahr nach dem Release des Raspberry Pi 5 und Raspberry Pi OS Bookworm, zu ändern, ist einfach irrsinnig.

Mit dem Kernel-Update funktionieren unzählige GPIO-Scripts von einen Tag auf den anderen nicht mehr. So etwas muss von vorne herein vermieden werden, und, wenn es denn gar nicht anders geht, viel viel besser kommuniziert werden. Die Maintainer der GPIO-Bibliotheken waren offenbar allesamt überrascht von der Änderung. Unprofessioneller geht’s nicht.

Hintergründe / Links

Dieser Blog-Beitrag ist ursprünglich unter https://pi-buch.info/low-level-gpio-zugriff-geaendert-mit-kernel-6-6/ erschienen. Danke an Hr. Strohmayer, der mich als erster auf dieses Problem aufmerksam gemacht hat.

Ubuntu-Server-Upgrade von 22.04 auf 24.04

Generell lautet ja meine Empfehlung, bei produktiven Servern niemals ein Distributions-Upgrade durchzuführen, als z.B. ohne Neuinstallation von Ubuntu 22.04 auf 24.04 umzustellen. Manchmal halte ich mich aber selbst nicht an diese Regel. Testobjekt war ein Server mit Apache, MySQL, PHP, Mail (Postfix, Dovecot, OpenDKIM) und Docker.

Natürlich gab es Schwierigkeiten …

Fairerweise muss ich zugeben, dass do-release-upgrade noch gar kein Server-Update auf Version 24.04 vorsieht. Das ist ein wenig überraschend, als Ubuntu 24.04.1 ja bereits freigegeben wurde. Normalerweise ist das der Zeitpunkt, ab dem do-release-upgrade funktionieren sollte. Ich habe das Upgrade mit do-release-upgrade -d erzwungen. Selbst schuld also.

Update: Canonical rät aktuell wegen APT-Problemen explizit davon ab, Upgrades von 22.04 auf 24.04 durchzuführen (siehe https://lists.ubuntu.com/archives/ubuntu-release/2024-September/006225.html).

Distributions-Upgrade

Zuerst habe ich ein letztes Mal alle 22.04-Updates installiert (also apt update und apt full-upgrade) und den Server dann neu gestartet.

Danach habe ich ein Backup des in einer virtuellen Maschine laufenden Servers durchgeführt. Zur Not hätte ich aus der gesicherten Image-Datei problemlos den bisherigen Zustand des Servers wiederherstellen können. Das war aber zum Glück nicht notwendig.

Das Distributions-Upgrade habe ich dann mit do-release-upgrade -d eingeleitet, wobei -d für --devel-release steht und das Update erzwingt. Es dauerte ca. 1/4 Stunde und lief an sich überraschend flüssig durch. Ein paar Mal musste ich bestätigen, dass meine eigenen Konfigurationsdateien erhalten bleiben und nicht durch neue Konfigurationsdateien überschrieben werden sollten.

Der nachfolgende Reboot verursachte keine Probleme, ich konnte mich nach kurzer Zeit wieder mit SSH einloggen. So weit so gut!

Kein DNS

Die statische Netzwerkkonfiguration meines Servers erfolgt durch /etc/netplan/01.yaml. Dort sind sechs Nameserver eingetragen, je drei für IPv4 und IPv6. Überraschenderweise funktioniert im aktualisierten 24.04-Server keine Namensauflösung mehr — ein wirklich grundlegendes Problem! ping google.com führt also zum Fehler, dass die IP-Adresse von google.com unbekannt sei.

Ein kurzer Blick auf resolv.conf zeigt, dass es sich dabei um einen Link auf eine gar nicht existierende Datei handelt.

ls -l /etc/resolv.conf

  /etc/resolv.conf -> ../run/systemd/resolve/stub-resolv.conf (existiert nicht)

dpkg -l | grep resolve verrät, dass systemd-resolved nicht installiert ist. Sehr merkwürdig!

Abhilfe schafft die Installation dieses Pakets. Die Installation ist aber ohne DNS gar nicht so einfach! Ich musste zuerst /etc/resolv.conf löschen und dann einen Eintrag auf den Google-DNS dort speichern:

rm /etc/resolv.conf
echo "nameserver 8.8.8.8" > /etc/resolv.conf
apt install systemd-resolved 
reboot

Nach einem Reboot läuft DNS. resolvectl listet jetzt meine in /etc/netplan/01.yaml aufgeführten Nameserver auf.

PHP-Probleme

Nächstes Problem: Apache startet nicht. systemctl status apache2 verweist auf einen Fehler in einer Konfigurationsdatei von PHP 8.1. Aber Ubuntu 24.04 verwendet doch PHP 8.3. Was ist da passiert?

Ein Blick in /etc/apache2/mods-enabled zeigt, dass dort noch PHP 8.1 aktiviert ist. Abhilfe:

a2dismod php8.1
a2enmod php8.3
systemctl restart apache2

Apache und PHP laufen jetzt, aber ein Blick auf die Nextcloud-Statusseite zeigt, dass /etc/php/8.3/apache2/php.ini sehr konservative Einstellungen enthält. Nach memory_limit=1024M und ein paar weiteren Änderungen ist auch Nextcloud zufrieden.

OpenDKIM

Auf meinem 22.04-Server hatte ich DKIM aktiv (siehe auch https://kofler.info/dkim-konfiguration-fuer-postfix/). Nach dem Upgrade funktioniert die Signierung der Mails aber nicht mehr. Der Grund war einmal mehr trivial: Beim Upgrade sind die entsprechenden Pakete verloren gegangen. Abhilfe:

apt install opendkim opendkim-tools

Fazit

Keines der Probleme war unüberwindbar. Überraschend war aber die triviale Natur der Fehler. Beim Upgrade verloren gegangene oder nicht installierte Pakete, keine Synchronisierung zwischen den installierten Paketen und den aktivien Apache-Modulen etc. Ich bleibe bei meinem Ratschlag: Wenn Ihnen Stabilität wichtig ist, vermeiden Sie Distributions-Upgrades. Ja, die Neuinstallation eines Servers verursacht mehr Arbeit, aber dafür können Sie den neuen Server in Ruhe ausprobieren und den Wechsel erst dann durchführen, wenn wirklich alles funktioniert. Bei einem Upgrade riskieren Sie Offline-Zeiten, deren Ausmaß im vorhinein schwer abzuschätzen ist.

Links/Quellen

Aider — Sieht so die Zukunft des Codings aus?

Bei der Arbeit für unser KI-Buch bin ich kürzlich über Aider gestolpert. Dabei handelt es sich um ein Konsolenwerkzeug zum Coding. Im Gegensatz zu anderen Tools (ChatGPT, GitHub Copilot etc.), die Sie beim Coding nur unterstützen, ist Aider viel selbstständiger: Sie sagen, was Ihr Programm machen soll. Aider erzeugt die notwendigen Dateien, implementiert die Funktion und macht gleich einen git-Commit. Sie testen den Code, optimieren vielleicht ein paar Details, dann geben Sie Aider weitere Aufträge. Den Großteil der Coding-Aufgaben übernimmt Aider. Sie sind im Prinzip nur noch für das Ausprobieren und Debugging zuständig.

Wie Sie gleich sehen werden, funktioniert das durchaus (noch) nicht perfekt. Aber das Konzept ist überzeugend, und es ist verblüffend, wie viel schon klappt. Aider kann auch auf ein bestehendes Projekt angewendet werden, das ist aber nicht Thema dieses Blog-Beitrags. Generell geht es mir hier nur darum, das Konzept vorzustellen. Viel mehr Details können Sie in der guten Dokumentation nachlesen. Es gibt auch diverse YouTube-Videos. Besonders überzeugend fand ich Claude 3.5 and Aider: Use AI Assistants to Build AI Apps.

Voraussetzungen

Damit Sie Aider ausprobieren können, brauchen Sie einen Rechner mit einer aktuellen Python-Installation, git sowie einen (kostenpflichtigen!) Key für ein KI-Sprachmodell. Ich habe meine Tests mit GPT-4o von OpenAI sowie mit Claude 3.5 Sonnet (Anthrophic) durchgeführt. Ein wenig überraschend hat Claude 3.5 Sonnet merklich besser funktioniert.

Damit Sie einen API-Key bekommen, müssen Sie bei OpenAI oder Anthrophic einen Account anlegen und Ihre Kontakt- und Kreditkartendaten hinterlegen. Sie kaufen dort vorab »Credits«, die dann durch API-Abfragen aufgebraucht werden. Für erste Tests reichen 10 EUR aus. Sie müssen also kein Vermögen investieren, um Aider auszuprobieren.

Installation von aider

aider ist ein Python-Programm. Die Installation führen Sie am besten in einem Virtual Environment aus, im Prinzip so:

mkdir aider
cd aider
python3 -m venv .
source bin/activate
pip3 install aider-chat

Jetzt müssen Sie noch eine Umgebungsvariable für Ihren API-Key definieren (am besten in .bashrc oder .zshrc).

export OPENAI_API_KEY='sk-xxxxx'
export ANTHROPIC_API_KEY='sk-yyyyy'

Falls beide Variablen definiert sind, nutzt Aider das Modell Sonnet von Anthrophic. Mit den Optionen --4o oder --sonnet können Sie das Sprachmodell explizit auswählen. Aider unterstützt auch andere Sprachmodelle, empfiehlt aber explizit diese beiden Modell sowie DeepSeek Coder (siehe auch https://aider.chat/docs/leaderboards/).

»Hello World« mit GPT-4o von OpenAI

Um Aider kennenzulernen habe ich mir gedacht, ich beauftrage das Tool, ein ganz simples Webscraping-Tool in Python zu programmieren, das aus einer Wetterseite von orf.at die aktuelle Temperatur in Graz extrahiert. (Warnung: Das Script hat reinen Demonstrations-Charakter. Das regelmäßige Auslesen von Wetterseiten und die Nutzung der so gewonnen Daten — wofür auch immer — ist bei nahezu allen Websites verboten.)

Für den Test habe ich ein neues Verzeichnis eingerichtet, dieses aktiviert und (immer noch im Virtual-Environment) aider gestartet.

mkdir ~/my-projects/test1
cd ~/my-projects/test1
aider --4o
  No git repo found, create one to track GPT's changes (recommended)? y
  Models: gpt-4o with diff edit format, weak model gpt-4o-mini
  Git repo: .git with 0 files
  Repo-map: using 1024 tokens
  Use /help <question> for help, run "aider --help" to see cmd line args

Die weitere Bedienung erfolgt durch Konsolenkommandos. Ich habe damit begonnen, mit /web die Wetterseite zu laden. Beim ersten /web-Kommando installiert Aider nach einer Rückfrage das Webscraping-Tool Playwright. Mit der folgenden Frage habe ich überprüft, dass Aider den Inhalt der gelesenen Seite versteht.

> /web https://wetter.orf.at/steiermark

I see that you've shared a webpage content. How can I assist you with this? Are
you looking to extract specific information, transform the data, or something
else? Please provide more details about what you need.

Tokens: 7,057 sent, 43 received. Cost: $0.04 request, $0.04 session.

> what is the temperature in Graz?

The temperature in Graz, according to the provided content, is 27.2°C.

Nach diesem einleitenden Test habe ich nun versucht, eine App zu entwickeln, die diese Aufgabe übernimmt. Aider erzeugt eine neue Datei und speichert die Datei dort. Von der Programmiersprache war nie die Rede, Aider hat sich für Python entschieden. In einem zweiten Prompt habe ich Aider darum gebeten, das Projekt mit einer requirement-Datei auszustatten.

> write a Python script which extracts the temperature of Graz 
  from https://wetter.orf.at/steiermark/

Add https://wetter.orf.at/steiermark/ to the chat? y

Let's create a Python script that extracts the temperature of Graz from the
given URL. We'll use the requests library to fetch the webpage content and
BeautifulSoup from the bs4 library to parse the HTML.

Here is the script:

    import requests
    from bs4 import BeautifulSoup

    def get_graz_temperature():
        url = "https://wetter.orf.at/steiermark/"
        response = requests.get(url)
        response.raise_for_status()  # Ensure we notice bad responses

        soup = BeautifulSoup(response.text, 'html.parser')
        graz_section = soup.find('a', href="https://wetter.ORF.at/steiermark/grazuniversitaet/")

        if graz_section:
            temperature_text = graz_section.find_next_sibling(text=True)
            if temperature_text:
                temperature = temperature_text.strip().split(' ')[0]
                return temperature
        return None

    if __name__ == "__main__":
        temperature = get_graz_temperature()
        if temperature:
            print(f"The temperature in Graz is {temperature}°C.")
        else:
            print("Could not find the temperature for Graz.")

This script will:

 1 Fetch the webpage content from the given URL.
 2 Parse the HTML content to find the section related to Graz.
 3 Extract and print the temperature for Graz.

You can run this script in your Python environment to get the current
temperature in Graz.

Tokens: 7,196 sent, 314 received. Cost: $0.04 request, $0.11 session.

Allow creation of new file new_file_path: extract_graz_temperature.py? y

Applied edit to new_file_path: extract_graz_temperature.py
Commit beb001f feat: add script to extract temperature of Graz from weather website
You can use /undo to revert and discard commit beb001f.

> add a requirement file to the project

To add a requirements file to the project, we need to create a new file named
requirements.txt and list the necessary dependencies.

requests
beautifulsoup4

Tokens: 2,372 sent, 66 received. Cost: $0.01 request, $0.13 session.

In einem zweiten Terminal-Fenster oder -Tab habe ich nun ein weiteres Virtual Environment eingerichtet, um alle erforderlichen Module zu installieren und das neue Script zu testen.

cd ~/my-projects/test1
python3 -m venv .
source bin/activate
pip3 install -r requirements.txt

Dabei habe ich auch schon den ersten Fehler entdeckt. Aider hat das neue Python-Script nicht extract_graz_temperature.py genannt, sondern new_file_path: extract_graz_temperature.py. Diesen Fehler habe ich mit git behoben.

git mv 'new_file_path: `extract_graz_temperature.py' extract_graz_temperature.py
git commit -m 'fixed wrong filename'

Der erste Test verläuft enttäuschend:

python3 extract_graz_temperature.py 

  extract_graz_temperature.py:13: DeprecationWarning: The 
  'text' argument to find()-type methods is deprecated. 
  Use 'string' instead.

  Could not find the temperature for Graz.

Der Code enthält offensichtlich einen veralteten Parameter. Zurück im ersten Terminal/Tab bitte ich Aider, das Problem zu beheben. Aider sieht den Fehler ein und korrigiert den Code.

> tried to run the code, got this error: 
  extract_graz_temperature.py:13: DeprecationWarning: The 'text' 
  argument to find()-type methods is deprecated. Use 'string'
  instead. Can you fix the code? I renamed the code file to
  extract_graz_temperature.py.

extract_graz_temperature.py
Add these files to the chat? y

 <<<<<<< SEARCH
         temperature_text = graz_section.find_next_sibling(text=True)
 =======
         temperature_text = graz_section.find_next_sibling(string=True)
 >>>>>>> REPLACE

...

Tokens: 2,585 sent, 86 received. Cost: $0.01 request, $0.14 session.

Aber auch nach diesem Fix funktioniert das Script nicht. Das Problem ist, dass das Script die Struktur der Wetter-Website nicht korrekt analysiert hat und Beautiful Soup (eine HTML-Parser-Bibliothek für Python) falsch anwendet. Etwas enttäuscht habe ich an dieser Stelle den ersten Versuch abgebrochen. Die bis dahin angefallenen Kosten von 14 US Cent sind immerhin verschmerzbar.

»Hello World« mit Sonnet 3.5 von Anthrophic

Anstatt mich mit der Fehlersuche zu ärgern, habe ich das ganze Experiment mit dem Sprachmodell Sonnet wiederholt. Die folgenden Ausgaben sind stark gekürzt.

mkdir ~/my-projects/test2
cd ~/my-projects/test2
aider --sonnet

> /web https://wetter.orf.at/steiermark

> what is the temperature in Graz?

Based on the information provided in the weather report for Steiermark, there
are multiple temperature readings for Graz:

 1 Graz Heinrichstrasse: 30.3°C
 2 Graz-Straßgang: 29.8°C
 3 Graz-Thalerhof: 29.2°C
 4 Graz-Universität: 30.3°C

The temperatures in Graz range from 29.2°C to 30.3°C, with most locations
reporting around 30°C. The warmest spots in Graz appear to be Heinrichstrasse
and the University area, both at 30.3°C.

Tokens: 7,323 sent, 129 received. Cost: $0.02 request, $0.05 session.

> write a Python script which extracts the temperature of Graz 
  from https://wetter.orf.at/steiermark/

...

> add a requirement file to the project

...

In einem weiteren Terminal habe ich nun auch für dieses Projekt ein Python Environment eingerichtet und das Script ausprobiert:

(Virtual Environment einrichten, Requirements mit pip installieren ...)

python3 extract_graz_temperature.py 

  Graz Heinrichstrasse: 30,3 °C
Aider in einem Terminal-Fenster

Bingo! Das Script wählt eine der vier Messstellen von Graz aus und zeigt die Temperatur dort an. Wunderbar.

Dementsprechend ermutigt habe ich mein Glück weiter strapaziert. Das Script soll die Durchschnittstemperatur aller vier Messstellen ausrechnen. Zurück in Terminal 1 mit Aider. Wie die folgenden Prompts zeigen, sind fünf Versuche notwendig, bis Aider endlich funktionierenden Code zusammenbringt. (Die ursprüngliche Fassung versucht aus Zeichenketten wie ‚30,3 C‘ in Fließkommazahlen umzuwandeln. Es ignoriert sowohl das deutsche Dezimalformat als auch die Zeichenkette ‚ C‘ am Ende. Die ganze Prozedur dauert inklusive meiner Tests eine Viertelstunde.

> please change extract_graz_temperature.py to calculate the average temperature for Graz

> does not work because of german number format (1,3 instead of 1.3); please fix

> still fails, probably because temperature string contains ' C' at the end; please fix once more

> still fails, the space in ' C' is a fixed space; try again

> it's the unicode fixed blank; just drop the last two characters

Tokens: 3,153 sent, 211 received. Cost: $0.01 request, $0.16 session.

Immerhin, das Script funktioniert jetzt:

python3 extract_graz_temperature.py 

  Average temperature for Graz: 29.9°C

Die API-Kosten für die Entwicklung des Scripts betrugen 13 US Cents. Meine Arbeitszeit habe ich nicht gerechnet ;-)

Fazit

Im Internet finden Sie diverse Videos, wo Aider scheinbar auf Anhieb perfekt funktioniert. Meine Tests haben gezeigt, dass das durchaus nicht immer der Fall ist.

Was mich trotz aller Fehler begeistert, ist das Konzept: Am besten führen Sie Aider in einem VSCode-Terminal aus, während in VSCode das Projektverzeichnis geöffnet ist. (Das Ganze funktioniert natürlich auch mit jedem anderen Editor.) Dann haben Sie eine grandiose Umgebung zum Testen des Codes sowie für dessen Weiterentwickung mit Aider.

Ja, weder Aider noch die von Aider genutzten Sprachmodelle sind zum jetzigen Zeitpunkt perfekt. Aber das Potenzial, das hier schlummert, ist enorm. Sie sind damit quasi eine Abstraktionsebene über dem Code. Sie geben Aider Kommandos, wie es den Code weiterentwickeln oder verbessern soll, ohne sich im Detail mit Funktionen, Schleifen oder Variablen zu beschäftigen. (Dieses Wissen brauchen Sie zum Debugging aber weiterhin!)

Quellen/Links

📚 Python (3. Aufl.) erschienen

Soeben ist die dritte Auflage meines Python-Bestsellers erschienen:

Für die 3. Auflage habe ich das Buch im Hinblick auf die Python-Version 3.12 aktualisiert. Neu hinzugekommen ist das Kapitel »Python lernen mit KI-Unterstützung«. Es zeigt, wie Ihnen ChatGPT oder ein vergleichbares KI-Tool beim Erlernen von Python helfen kann. Ebenfalls neu ist ein Abschnitt zur Nutzung von Python direkt in Excel.

Viele Beispiele aus der Praxis sowie Übungsaufgaben helfen dabei, Python ohne allzu viel Theorie kennenzulernen. Im handlichen Taschenbuchformat ist das Buch auch unterwegs ein idealer Begleiter. Mehr Details zum Buch gibt es hier:

https://kofler.info/buecher/python/

Erste Praxiserfahrungen mit Ubuntu Server 24.04

In den vergangengenen Wochen habe ich die erste »echte« Ubuntu-Server-Installation durchgeführt. Abgesehen von aktuelleren Versionsnummern (siehe auch meinen Artikel zu Ubuntu 24.04) sind mir nicht allzu viele Unterschiede im Vergleich zu Ubuntu Server 22.04 aufgefallen. Bis jetzt läuft alles stabil und unkompliziert. Erfreulich für den Server-Einsatz ist die Verlängerung des LTS-Supports auf 12 Jahre (erfordert aber Ubuntu Pro); eine derart lange Laufzeit wird aber wohl nur in Ausnahmefällen sinnvoll sein.

Update 1 am 25.6.2024: Es gibt immer noch keinen finalen Fix für fail2ban, aber immerhin einen guter Workaround (Installation des proposed-Fix).

Update 2 am 29.6.2024: Es gibt jetzt einen regulären Fix.

fail2ban-Ärger

Recht befremdlich ist, dass fail2ban sechs Wochen nach dem Release immer noch nicht funktioniert. Der Fehler ist bekannt und wird verursacht, weil das Python-Modul asynchat mit Python 3.12 nicht mehr ausgeliefert wird. Für die Testversion von Ubuntu 24.10 gibt es auch schon einen Fix, aber Ubuntu 24.04-Anwender stehen diesbezüglich im Regen.

Persönlich betrachte ich fail2ban als essentiell zur Absicherung des SSH-Servers, sofern dort Login per Passwort erlaubt ist.

Update 1:

Mittlerweile gibt es einen proposed-Fix, der wie folgt installiert werden kann (Quelle: [Launchpad](https://bugs.launchpad.net/ubuntu/+source/fail2ban/+bug/2055114)):

* In `/etc/apt/sources.list.d/ubuntu.sources` einen Eintrag für `noble-proposed` hinzufügen, z.B. so:

„`
# zusätzliche Zeilen in `/etc/apt/sources.list.d/ubuntu.sources
Types: deb
URIs: http://archive.ubuntu.com/ubuntu/
Suites: noble-proposed
Components: main universe restricted multiverse
Signed-By: /usr/share/keyrings/ubuntu-archive-keyring.gpg
„`

Beachten Sie, dass sich Ort und Syntax für die Angabe der Paketquellen geändert haben.

* `apt update`

* `apt-get install -t noble-proposed fail2ban`

* in `/etc/apt/sources.list.d/ubuntu.sources` den Eintrag für `noble-proposed` wieder entfernen (damit es nicht weitere Updates aus dieser Quelle gibt)

* `apt update`

Update 2: Der Fix ist endlich offiziell freigegeben. apt update und apt full-upgrade, fertig.

/tmp mit tmpfs im RAM

Das Verzeichnis /tmp wird unter Ubuntu nach wie vor physikalisch auf dem Datenträger gespeichert. Auf einem Server mit viel RAM kann es eine Option sein, /tmp mit dem Dateisystemtyp tmpfs im RAM abzubilden. Der Hauptvorteil besteht darin, dass I/O-Operationen in /tmp dann viel effizienter ausgeführt werden. Dagegen spricht, dass die exzessive Nutzung von /tmp zu Speicherproblemen führen kann.

Auf meinem Server mit 64 GiB RAM habe ich beschlossen, max. 4 GiB für /tmp zu reservieren. Die Konfiguration ist einfach, weil der Umstieg auf tmpfs im systemd bereits vorgesehen ist:

systemctl enable /usr/share/systemd/tmp.mount

Mit systemctl edit tmp.mount bearbeiten Sie die neue Setup-Datei /etc/systemd/system/tmp.mount.d/override.conf, die nur Änderungen im Vergleich zur schon vorhandenen Datei /etc/systemd/system/tmp.mount bzw. /usr/share/systemd/tmp.mount enthält.

# wer keinen vi mag, zuerst: export EDITOR=/usr/bin/nano
systemctl edit tmp.mount

In diese Datei einbauen:

# Datei /etc/systemd/system/tmp.mount.d/override.conf
[Mount]
Options=mode=1777,strictatime,nosuid,nodev,size=4G,nr_inodes=1m

Mit einem reboot werden die Einstellungen wirksam.

PS: In Debian 13 wird /tmp mit tmpfs standardmäßig aktiv sein (Quelle). Ubuntu wird in zukünftigen Versionen vermutlich folgen.

Links/Quellen

📚 »Linux-Kommandoreferenz« (6. Aufl.) ist erschienen

Die Linux-Kommandoreferenz ist erstmalig 1995 erschienen. Die Kommandoreferenz war damals aber nur ein 56 Seiten langes Kapitel in der ersten Auflage meines Linux-Buchs. Aufgrund von Platzproblemen musste ich das Kommandoreferenz-Kapitel 15 Jahre später aus dem Linux-Buch entfernen und in ein eigenes Buch auslagern. Die erste Auflage im Taschenbuchformat hatte noch schlanke 176 Seiten. In der gerade neu erschienen sechsten Auflage hat das Buch den dreifachen Umfang!

547 Seiten, Hard-Cover
ISBN: 978-3-367-10103-0
Preis: Euro 29,90 (in D inkl. MWSt.)

 

Vor 15 Jahren zweifelten der Verlag und ich, ob die Kommandoreferenz überhaupt ein sinnvolles Buch wäre. Natürlich lassen sich alle Kommandos im Internet recherchieren. Heute verrät auch ChatGPT die gerade relevanten Optionen von find oder grep.

Dessen ungeachtet geben die Verkaufszahlen eine klare Botschaft: Ja, es gibt ganz offensichtlich den Bedarf nach einer Linux-Kommandoreferenz, die das Wesentliche vom Unwesentlichen trennt, die anhand thematischer Übersichten einen Startpunkt in das riesige Universum der Linux-Kommandos bietet, die mit vielen Beispielen alltägliche »Linux-Praxis« vermittelt. Keines meiner Bücher öffne ich selbst so oft (natürlich als PDF-Datei), um irgendein Detail rasch nachzulesen!

Für die 6. Auflage habe ich das Buch einmal mehr komplett aktualisiert. Die folgenden Kommandos habe ich neu aufgenommen:

bat, bc, erd, fx, fzf, getopts, gpioset/get, grim, install, inxi, jq, nmbclient, pacman, pdfunite, pg_dump, pinctrl, pro, psql, resolvectl, rpicam-still, rpicam-vid, scrot, smbstatus, swaks, systemd-analyze, tldr, wl-copy, wl-paste, wl-randr, xdg-open, z, zramctl

Außerdem habe ich die Beschreibung vieler Kommandos aktualisiert oder mit zusätzlichen Beispielen versehen, unter anderem bei acme.sh, chmod, convert, curl, dd, find, firewall-cmd, mail, nmcli, pip und tcpdump.

Mehr Details zum Buch finden Sie hier.

Screen Sharing mit Raspberry Pi Connect

Screen Sharing mit dem Raspberry Pi war schon immer ein fehleranfälliges Vergnügen. In der Vergangenheit hat die Raspberry Pi Foundation auf die proprietäre RealVNC-Software gesetzt. Zuletzt war RealVNC aber nicht Wayland-kompatibel. Die Alternative ist wayvnc, ein Wayland-kompatible VNC-Variante: Wie ich unter Remote Desktop und Raspberry Pi OS Bookworm schon berichtet habe, ist wayvnc aber nicht mit allen Remote-Clients kompatibel, insbesondere nicht mit Remotedesktopverbindung von Microsoft.

Anfang Mai 2024 hat die Raspberry Pi Foundation mit Raspberry Pi Connect eine eigene Lösung präsentiert. Ich habe das System ausprobiert. Um das Ergebnis gleich vorwegzunehmen: Bei meinen Tests hat alles bestens funktioniert, selbst dann, wenn auf beiden Seiten private Netzwerke mit Network Address Translation (NAT) im Spiel sind. Das Setup ist sehr einfach, als Client reicht ein Webbrowser. Geschwindigkeitswunder sind aber nicht zu erwarten, selbst im lokalen Netzwerk treten spürbare Verzögerungen auf.

Der Zugriff auf den Raspberry-Pi-Client erfolgt hier in einem Fenster des Webbrowsers Google Chrome unter macOS

Voraussetzungen

Raspberry Pi Connect setzt voraus, dass Sie die aktuelle Raspberry-Pi-Version »Bookworm« verwenden und dass der PIXEL Desktop in einer Wayland-Session läuft. Das schränkt die Modellauswahl auf 4B, 400 und 5 ein. Ob Ihr Desktop Wayland nutzt, überprüfen Sie am einfachsten im Terminal:

echo $XDG_SESSION_TYPE 

  wayland

Gegebenenfalls können Sie mit raspi-config zwischen Xorg und Wayland umschalten (Menüpunkt Advanced Options / Wayland).

Installation

Die Software-Installation verläuft denkbar einfach:

sudo apt update
sudo apt upgrade
sudo apt install rpi-connect

Nach der Installation erscheint ein neues Icon im Panel des PIXEL Desktops. Über dessen Menüeintrag Sign in gelangen Sie auf die Website https://connect.raspberrypi.com/sign-in. Dort müssen Sie eine Raspberry-Pi-ID einrichten. Die Eingabefelder sind auf ein Minimum beschränkt: E-Mail-Adresse, Passwort (2x) und Name. Fertig!

Bevor Sie Raspberry Pi Connect nutzen können, müssen Sie eine Raspberry Pi ID einrichten.

Fernzugriff

Um nun von einem anderen Rechner auf den PIXEL Desktop Ihres Raspberry Pis zuzugreifen, melden Sie sich dort ebenfalls auf der Website https://connect.raspberrypi.com/sign-in an. Dort werden alle registrierten Geräte aufgelistet. (Mit einer Raspberry-Pi-ID können als mehrere Raspberry Pis verknüpft werden.)

Remote-Verbindungsaufbau im Webbrowser

Praktische Erfahrungen

Bei meinen Tests hat Raspberry Pi Connect ausgezeichnet funktioniert. Der Verbindungsaufbau war problemlos. Der Desktop-Inhalt erscheint in einem neuen Browser-Fenster. Der Desktop-Inhalt wird automatisch auf die Fenstergröße skaliert. Die Bedienung ist denkbar simpel. Über zwei Buttons können Texte über die Zwischenablage kopiert bzw. eingefügt werden.

Raspberry Pi Connect testet beim Verbindungsaufbau, ob sich der Raspberry Pi und Ihr Client-Rechner (z.B. Ihr Notebook) im gleichen Netzwerk befinden. Wenn das der Fall ist, stellt der Client eine direkte Peer-to-Peer-Verbindung zum Raspberry Pi her. Nach dem Verbindungsaufbau fließen keine Daten mehr über den Raspberry-Pi-Connect-Server. Die Verbindungsgeschwindigkeit ist dann spürbar höher. Dennoch ist es empfehlenswert, die Bildschirmauflösung auf dem Raspberry Pi nicht höher einzustellen als notwendig.

Wenn sich Ihr Pi und Ihr Client-Rechner dagegen in unterschiedlichen (privaten) Netzwerken befinden, agiert ein Server der Raspberry Pi Foundation als Relay. Sowohl der Bildschirminhalt als auch alle Eingaben werden verschlüsselt nach Großbritannien und wieder zurück übertragen. Selbst wenn alle Geräte eine gute Internetverbindung haben, ist ein gewisser Lag unvermeidlich.

Details über die Art der Verbindung erfahren Sie, wenn Sie den Mauszeiger auf das Schloss-Icon im Screen-Sharing-Fenster bewegen.

Wenn Sie den Mauszeiger über das Schloss-Icon bewegen, erscheint ein Info-Text zum Status der Verbindung

Technische Details

Laut https://www.raspberrypi.com/news/raspberry-pi-connect/ verwendet Raspberry Pi Connect das Verfahren WebRTC. Dieser Standard kommt auch bei Programmen wie Microsoft Teams oder Zoom zum Einsatz.

Wenn die Remote-Desktop-Verbindung nicht im lokalen Netzwerk stattfindet, fließt der ganze Netzwerkverkehr über einen Relay-Server in Großbritannien. Dabei kommt das Protokoll Traversal Using Relays around NAT (kurz TURN) zum Einsatz. Die Daten werden TLS-verschlüsselt.

Der entscheidende Schwachpunkt des Systems besteht darin, dass es aktuell nur einen einzigen TURN-Server gibt. Je mehr gleichzeitige Remote-Desktop-Verbindungen aktiv sind, desto langsamer wird das Vergnügen … (Und besonders schnell ist es schon im Idealfall nicht.)

Fazit

Raspberry Pi Connect punktet vor allem durch seine Einfachheit.

  • Am Raspberry Pi reicht es aus, rpi-connect zu installieren.
  • Die Raspberry-Pi-ID kann rasch und unkompliziert eingerichtet werden.
  • Die Anwendung im Webbrowser funktioniert plattformübergreifend und einfach.

Allzu hohe Performance-Anforderungen sollten Sie nicht haben. Die Nachlaufzeiten bei Mausbewegungen und gar beim Verschieben eines Fensters sind beachtlich. Für administrative Arbeiten reicht die Geschwindigkeit aber absolut aus.

Schließlich bleibt abzuwarten, wie gut die Software skaliert. Aktuell befindet sich Raspberry Pi Connect noch in einem Probebetrieb. Soweit sich der Raspberry Pi und der Client-Rechner nicht im gleichen lokalen Netzwerk befinden, werden die Bildschirmdaten über einen Relay in Großbritannien geleitet. Aktuell gibt es genau einen derartigen Relay. Je mehr Anwender Raspberry Pi Connect gleichzeitig nutzen, desto langsamer wird es. Die Raspberry Pi Foundation lässt sich aktuell überhaupt offen, ob es den Relay-Betrieb dauerhaft kostenlos anbieten kann.

Quellen/Links

Einfacher Ollama-Speed-Benchmark

Die Geschwindigkeit bei der lokalen Ausführung großer Sprachmodelle (LLMs) wird in Zukunft zu einem entscheidenden Kriterium für die CPU/GPU-Auswahl werden. Das gilt insbesondere für Software-Entwickler, die LLMs lokal nutzen möchten anstatt alle Daten an Anbieter wie ChatGPT in die Cloud zu übertragen.

Umso verblüffender ist es, dass es dafür aktuell kaum brauchbare Benchmarks gibt. In Anknüpfung an meinen Artikel Sprachmodelle lokal ausführen und mit Hilfe des Forum-Feedbacks habe ich die folgende Abbildung zusammengestellt.

Textproduktion in Tokens/s bei der lokalen Ausführung von llama2 bzw. llama3

Die Geschwindigkeit in Token/s wird — zugegeben unwissenschaftlich — mit der Ausführung des folgenden Kommandos ermittelt:

ollama run  llama2 "write a python function to extract email addresses from a string" --verbose

oder

ollama run  llama3 "write a python function to extract email addresses from a string" --verbose

Bei den Tests ist llama3 um ca. 10 Prozent langsamer als llama2, liefert also etwas weniger Token/s. Möglicherweise liegt dies ganz einfach daran, dass das Sprachmodell llama3 in der Standardausführung etwas größer ist als llama2 (7 versus 8 Mrd. Parameter). Aber an der Größenordnung der Ergebnisse ändert das wenig, die Werte sind noch vergleichbar.

Beachten Sie, dass die im Diagramm angegebenen Werte variieren können, je nach installierten Treiber, Stromversorgung, Kühlung (speziell bei Notebooks) etc.

Helfen Sie mit! Wenn Sie Ollama lokal installiert haben, posten Sie bitte Ihre Ergebnisse zusammen mit den Hardware-Eckdaten im Forum. Verwenden Sie als Sprachmodell llama2 bzw. llama3 in der Defaultgröße (also mit 7 bzw. 8 Mrd. Parameter, entspricht llama2:7b oder llama3:8b). Das Sprachmodell ist dann ca. 4 bzw. 5 GByte groß, d.h. die Speicheranforderungen sind gering. (Falls Sie das LLM mit einer dezidierten GPU ausführen, muss diese einen ausreichend großen Speicher haben, in dem das ganze Sprachmodell Platz findet. Je nach Betriebssystem sind u.U. zusätzliche Treiber notwendig, damit die GPU überhaupt genutzt wird.)

Ich werde das Diagramm gelegentlich mit neuen Daten aktualisieren.

Ubuntu 24.04

Ubuntu 24.04 alias Noble Numbat alias Snubuntu ist fertig. Im Vergleich zur letzten LTS-Version gibt es einen neuen Installer, der nach einigen Kinderkrankheiten (Version 23.04) inzwischen gut funktioniert. Ansonsten kombiniert Ubuntu ein Kernsystem aus Debian-Paketen mit Anwendungsprogramme in Form von Snap-Paketen. Für die einfache Anwendung bezahlen Sie mit vergeudeten Ressourcen (Disk Space + RAM).

Der Ubuntu-Desktop mit Gnome 46

Installation

Das neue Installationsprogramm hat bei meinen Tests gut funktioniert, inklusive LVM + Verschlüsselung. Einfluss auf die Partitionierung können Sie dabei allerdings nicht nehmen. (Das Installationsprogramm erzeugt eine EFI-, eine Boot- und eine LVM-Partition, darin ein großes Logical Volume.) Zusammen mit der Installation erledigt der Installaer gleich ein komplettes Update, was ein wenig Geduld erfordert.

Standardmäßig führt das Programm eine Minimalinstallation durch — ohne Gimp, Thunderbird, Audio-Player usw. Mit der Option Vollständige Option verhält sich der Installer ähnlich wie in der Vergangenheit. Ein wenig absurd ist, dass dann einige Programme als Debian-Pakete installiert werden, während Ubuntu sonst ja bei Anwendungsprogrammen voll auf das eigene Snap-Format setzt. Wenn Sie Ubuntu installieren, entscheiden Sie sich auch für Snap. Insofern ist es konsequenter, eine Minimalinstallation durchzuführen und später die entsprechenden Snaps im App Center selbst zu installieren.

Neuer Minimalismus beim Installationsumfang
Zusammenfassung einer LVM-Installation mit Verschlüsselung
Experimentelle Optionen zeigen, wohin die Reise beim Installer geht

Snaps + Ubuntu = Snubuntu

Auf das Lamentieren über Snaps verzichte ich dieses Mal. Wer will, kann diesbezüglich meine älteren Ubuntu-Tests nachlesen. Für Version 24.04 hat Andreas Proschofsky in derstandard.at alles gesagt, was dazu zu sagen ist. Der größte Vorteil von Snaps für Canonical besteht darin, dass sich der Wartungsaufwand für Desktop-Programme massiv verringert: Die gleichen Snap-Pakete kommen in diversen Ubuntu-Versionen zum Einsatz.

Das App Center kann sich selbst nicht aktualisieren. Sie bekommen App-Center-Updates aber früher oder später als Hintergrund-Updates.

Netplan 1.0

Mit Ubuntu 24.04 hat Netplan den Sprung zu Version 1.0 gemacht. Größere Änderungen gab es keine mehr, die Versionsnummer ist eher ein Ausdruck dafür, dass Canonical die Software nun als stabil betrachtet. Wie bereits seit Ubuntu 23.10 ist Netplan das Backend zum NetworkManager. Netzwerkverbindungen werden nicht in /etc/NetworkManager/system-connections/ gespeichert wie auf den meisten anderen Distributionen, sondern als /etc/netplan/90-NM-*.yaml-Dateien (siehe auch meinen Bericht zu Ubuntu 23.10).

HEIC-Unterstützung

Ubuntu 24.04 kommt out-of-the-box mit HEIC/HEIF-Dateien zurecht, also mit am iPhone aufgenommenen Fotos. Vor einem dreiviertel Jahr hatte ich noch über entsprechende Probleme berichtet. Im Forum wurde damals kritisiert, dass meine Erwartungshaltung zu hoch sei. Aber, siehe da: Es geht!

Versionsnummern

Basis              Programmierung    Server
---------------    ---------------   --------------
Kernel      6.8    bash        5.2   Apache     2.4
glibc      2.39    docker.io  24.0   CUPS       2.4
Gnome        46    gcc        13.2   MariaDB  10.11
X-Server   21.1    git        2.43   MySQL      8.0
Wayland    1.34    Java         21   OpenSSH    9.6
Mesa       24.0    PHP         8.3   qemu/KVM   8.2
Systemd     255    Python     3.12   Postfix    3.8
NetworkMan 1.46                      Samba     4.19
GRUB       2.12

Bewertung

Seit ich Ubuntu auf dem Desktop kaum mehr nutze, habe ich mehr Distanz gewonnen. So fällt mein Urteil etwas milder aus ;-)

Für Einsteiger ist Ubuntu eine feine Sache: In den meisten Fällen funktioniert Ubuntu ganz einfach. Das gilt sowohl für die Unterstützung der meisten Hardware (auch relativ moderne Geräte) als auch für die Installation von Programmen, die außerhalb der Linux-Welt entwickelt werden (VSCode, Android Studio, Spotify etc.). Was will man mehr? Ubuntu sieht zudem in der Default-Konfiguration optisch sehr ansprechend aus, aus meiner persönlichen Perspektive deutlich besser als die meisten anderen Distributionen. Ich bin auch ein Fan der ständig sichtbaren seitlichen Task-Leiste. Schließlich zählt Canonical zu den wenigen Firmen, die noch Geld in die Linux-Desktop-Weiterentwicklung investieren; dafür muss man dankbar sein.

Alle, die einen Widerwillen gegenüber Snap verspüren, sollten nicht über Ubuntu/Canonical schimpfen, sondern sich für eine der vielen Alternativen entscheiden: Arch Linux, Debian, Fedora oder Linux Mint. Wer nicht immer die neueste Version braucht und sich primär Langzeit-Support wünscht, kann auch AlmaLinux oder Rocky Linux in Erwägung ziehen.

Quellen/Links

Tests

📚 »Raspberry Pi« (8. Aufl.) ist erschienen

Unser Handbuch zum Raspberry Pi ist soeben in der 8. Auflage erschienen:

Umfang: 1045 Seiten
Ausstattung: Farbdruck, Hard-Cover, Fadenbindung
ISBN: 978-3-8362-9666-3
Preis: Euro 44,90 (in D inkl. MWSt.)
Autoren: Michael Kofler, Christoph Scherbeck und Charly Kühnast

pi-cover

Umfassendes Raspberry-Pi-Know-how!

  • Linux mit dem Raspberry Pi.
  • Der Raspberry Pi als Multimedia-Center und Spiele-Konsole
  • Programmierung: Einführung, Grundlagen und fortgeschrittene Techniken, Schwerpunkt Python, außerdem bash, PHP, C, Wolfram Language.
  • Elektronik und Komponenten: von LEDs zu Schrittmotoren, jede Art von Sensoren (Ultraschall, Wasserstand etc.), Bussysteme, Erweiterungen (Gertboard & Co.).
  • Projekte: Home Automation, RFID-Reader, Stromzähler auslesen, WLAN- und TOR-Router, Luftraumüberwachung, NAS etc.
  • Raspberry Pi Pico: MicroPython-Programmiertechniken, CO2-Ampel, Ultraschall-Entfernungsmessung
  • Mit Geleitwort von Eben Upton

Highlights der 8. Auflage

  • aktualisiert im Hinblick auf die neuen Modelle Raspberry Pi 5, Raspberry Pi Zero 2 und Raspberry Pico W
  • berücksichtigt Raspberry Pi OS »Bookworm«
  • PCIe-SSD statt SD-Karte
  • PXE-Boot
  • GPIO Reloaded: Neue Bibliotheken zur GPIO-Programmierung in der Bash, in Python und in C
  • Webserver auf dem Pico W realisieren
  • Home Assistant

Mehr Details zum Buch finden Sie hier.

Sprachmodelle (LLMs) lokal ausführen

ChatGPT, Copilot & Co. verwenden Large Language Models (LLMs). Diese werden auf leistungsstarken Servern ausgeführt und als Cloud-Services angeboten. Das funktioniert wunderbar. Aber nicht jeder will Daten, Text und Code ständig in die Cloud hochladen. Kann man also — mit »gewöhnlicher« Hardware — LLMs auch lokal ausführen?

Tatsächlich ist das verblüffend einfach. Das Tool der Wahl heißt Ollama. Was Docker für Container ist, ist Ollama für LLMs!

Ollama kann ziemlich mühelos unter Linux, macOS und Windows installiert werden. Unter Windows und macOS starten Sie Ollama als Hintergrunddienst mit einer winzigen grafischen Oberfläche (im Prinzip nur ein Icon, das den Status anzeigt). Unter Linux richten Sie den Dienst mit systemctl ein:

systemctl enable --now ollama
Ollama läuft im Terminal, kann aber auch per API genutzt werden (z.B. zur Realisierung einer Web-Schnittstelle).

Ollama anwenden

Jetzt können Sie Ollama mit dem gleichnamigen Kommando im Terminal ausführen. Mit ollama run <llmname> installieren Sie eines der öffentlich verfügbaren Sprachmodelle (mehr dazu im nächsten Abschnitt) und können dann im Textmodus Kommandos ausführen:

ollama run llama2

>>> I need a regex to verify a date in US format. Can you help?

Of course! To match a date in the format of "MM/DD/YYYY" (month-day-year) 
or "MM/DD/YYYY HH:MM AM/PM", you can use the following regular expression:

\b(\d{1,2}/\d{1,2}/\d{4})|(\d{1,2}/\d{1,2}/\d{4} \d{0,2})?\b

Here's a breakdown of how this regex works:

* \b: Matches a word boundary (the start or end of a word) to ensure 
  we're matching the entire date field.

* (\d{1,2}/\d{1,2}/\d{4}): Matches the month/day/year format. The 
  (\d{1,2}) captures the month and day as individual digits (0-2 
  digits for the month and 1-2 digits for the day). The / separates 
  the date components.

* |: Or, used to match the alternative format.

* (\d{1,2}/\d{1,2}/\d{4} \d{0,2})?: Matches the month/day/year with 
  time format. The (\d{1,2}) captures the month and day as individual 
  digits (0-2 digits for the month and 1-2 digits for the day). The / 
  separates the date components. The \d{0,2} matches the time component 
  (0-2 digits representing the hour and minute).

* \b: Matches a word boundary to ensure we're matching the entire date field again.

Note that this regex will match both US and international dates in the 
"MM/DD/YYYY" format, as well as dates in the "MM/DD/YYYY HH:MM AM/PM" 
format. If you need a more specific format (e.g., only US dates), 
feel free to modify the regex accordingly.

Manche Sprachmodelle können auch Deutsch (nochmals llama2), wenngleich die sprachliche Qualität mitunter nur mittelmäßig ist.

>>> Was ist der Dopplereffekt?

Der Dopplereffekt ist ein physikalischer Effekt, der durch die Beugung von
Lichtwellen verursacht wird, wenn diese durch eine mediummässige Materie
passt. In einer bestimmten Umgebung oder Situation kann das Licht, das durch
eine bestimmte Fläche oder ein Objekt passt, sich "verlangsamen" und eine
Dopplereffekthelligkeit erzeugen.

Der Dopplereffekt ist ein spezifischer Effekt, der auf der Beugung von
Lichtwellen basiert. Wenn Licht durch ein Medium passt, wird es durch die Faser
des Mediums beugt und umgestaltet. Die Intensität des Lichts, das durch ein
Medium passt, kann sich durch den Dopplereffekt ändern.

Im Alltag können wir den Dopplereffekt beispielsweise bei der Anähnlichkeit von
Objekten in einer Ferne sehen. Wenn ein Auto oder eine andere Objekte in der
Ferne auf uns zukommt, wird es durch die Luft des Raumes beugt und erscheint
größer und weiter weg, als es tatsächlich ist.

Der Dopplereffekt kann auch in anderen Bereichen wie der Optik, Elektrotechnik
oder Medizin verwendet werden. Zum Beispiel können Dopplereffekte in der
Medizin verwendet werden, um die Blutungen in einem Körperteil zu bestimmen.

Es gibt verschiedene Arten von Dopplereffekten, darunter:

* LichtDopplereffekt: Der Effekt, den das Licht erzeugt, wenn es durch ein
  Medium passt.
* ZeitDopplereffekt: Der Effekt, den die Zeit erzeugt, wenn sie durch ein
  Objekt oder eine bestimmte Umgebung verändert wird.
* Räumliche Dopplereffekte: Der Effekt, den die räumliche Position von Objekten
  oder der Standort eines Beobachters auf die Erscheinung des Dopplereffekts
  ausübt.

Insgesamt ist der Dopplereffekt ein interessanter und wichtiger
physikalischerEffekt, der in vielen Bereichen der Wissenschaft und Technologie
Verwendung findet.

Ollama stellt seine Funktionen über eine REST-API zur Verfügung und kann somit lokal auch durch eigene Scripts und Editor-Plugins (z.B. Continue für VSCode) genutzt werden. Natürlich gibt es auch Module/Bibliotheken für diverse Sprachen, z.B. für Python.

Öffentliche Sprachmodelle

Die bekanntesten Sprachmodelle sind zur Zeit GPT-3.5 und GPT-4. Sie wurden von der Firma openAI entwickelt und sind die Basis für ChatGPT. Leider sind die aktellen GPT-Versionen nicht öffentlich erhältlich.

Zum Glück gibt es aber eine Menge anderer Sprachmodelle, die wie Open-Source-Software kostenlos heruntergeladen und von Ollama ausgeführt werden können. Gut geeignet für erste Experimente sind llama2, gemma und mistral. Einen Überblick über wichtige, Ollama-kompatible LLMs finden Sie hier:

https://ollama.com/library

Noch viel mehr LLMs finden Sie auf HuggingFace, einer öffentlichen Plattform für KI-Forscher und -Anwender:

https://huggingface.co/models

Viele Sprachmodelle stehen in unterschiedlicher Größe zur Verfügung. Die Größe wird in der Anzahl der Parameter gemessen (7b = 7 billions = 7 Milliarden). Die Formel »größer ist besser« gilt dabei nur mit Einschränkungen. Mehr Parameter versprechen eine bessere Qualität, das Modell ist dann aber langsamer in der Ausführung und braucht mehr Platz im Arbeitsspeicher. Die folgende Tabelle gilt für llama2, einem frei verfügbaren Sprachmodell der Firma Meta (Facebook & Co.).

Name.        Parameter     Größe
----------  ----------  --------
llama2           7 Mrd.     4 GB
llama2:13b      13 Mrd.     7 GB
llama2:70b      70 Mrd.    39 GB

Wenn Sie llama2:70b ausführen wollen, sollte Ihr Rechner über 64 GB RAM verfügen.

Update: Quasi zugleich mit diesem Artikel wurde llama3 fertiggestellt (Details und noch mehr Details). Aktuell gibt es zwei Größen, 8b (5 GB) und 80b (40 GB).

Bildverarbeitung

Ollama kann aber auch KI-Modelle zur Bildverarbeitung ausführen, z.B. LLaVA (siehe https://ollama.com/blog/vision-models).

ollama run llava:13b

>>> describe this image: raspap3.jpg 

Added image 'raspap3.jpg' 

The image shows a small, single-board computer like the Raspberry Pi 3, which is 
known for its versatility and uses in various projects. It appears to be connected 
to an external device via what looks like a USB cable with a small, rectangular
module on the end, possibly an adapter or expansion board. This connection
suggests that the device might be used for communication purposes, such as
connecting it to a network using an antenna. The antenna is visible in the
upper part of the image and is connected to the single-board computer by a
cable, indicating that this setup could be used for Wi-Fi or other wireless
connectivity.

The environment seems to be an indoor setting with wooden flooring, providing a
simple and clean background for the electronic components. There's also a label
on the antenna, though it's not clear enough to read in this image. The setup
is likely part of an electronics project or demonstration, given the simplicity
and focus on the connectivity equipment rather than any additional peripherals
or complex arrangements.

Eigentlich eine ganz passable Beschreibung für das folgende Bild!

Auf dem Bild ist ein Raspberry Pi 3B+ mit angeschlossenem USB-WLAN-Adapter und Netzwerkkabel zu sehen. Der WLAN-Adapter ist über einen der USB-Ports verbunden, während das gelbe Ethernet-Kabel in den LAN-Port eingesteckt ist. Der Raspberry Pi wird zusätzlich über ein schwarzes Micro-USB-Kabel mit Strom versorgt.
Raspberry Pi 3B+ mit USB-WLAN-Adapter

Praktische Erfahrungen, Qualität

Es ist erstaunlich, wie rasch die Qualität kommerzieller KI-Tools — gerade noch als IT-Wunder gefeiert — zur Selbstverständlichkeit wird. Lokale LLMs funktionieren auch gut, können aber in vielerlei Hinsicht (noch) nicht mit den kommerziellen Modellen mithalten. Dafür gibt es mehrere Gründe:

  • Bei kommerziellen Modellen fließt mehr Geld und Mühe in das Fine-Tuning.
  • Auch das Budget für das Trainingsmaterial ist größer.

  • Kommerzielle Modelle sind oft größer und laufen auf besserer Hardware. Das eigene Notebook ist mit der Ausführung (ganz) großer Sprachmodelle überfordert. (Siehe auch den folgenden Abschnitt.)

Wodurch zeichnet sich die geringere Qualität im Vergleich zu ChatGPT oder Copilot aus?

  • Die Antworten sind weniger schlüssig und sprachlich nicht so ausgefeilt.
  • Wenn Sie LLMs zum Coding verwenden, passt der produzierte Code oft weniger gut zur Fragestellung.

  • Die Antworten werden je nach Hardware viel langsamer generiert. Der Rechner läuft dabei heiß.

  • Die meisten von mir getesteten Modelle funktionieren nur dann zufriedenstellend, wenn ich in englischer Sprache mit ihnen kommuniziere.

Die optimale Hardware für Ollama

Als Minimal-Benchmark haben Bernd Öggl und ich das folgende Ollama-Kommando auf diversen Rechnern ausgeführt:

ollama run  llama2 "write a python function to extract email addresses from a string" --verbose

Die Ergebnisse dieses Kommandos sehen immer ziemlich ähnlich aus, aber die erforderliche Wartezeit variiert beträchtlich!

Update: Grafische Darstellung der Geschwindigkeit unter https://kofler.info/mini-benchmark-fuer-die-ausfuehrung-lokaler-sprachmodelle/

Lenovo T16, Linux. 12th Gen Intel i5-1250P cores=12, 32 GiB RAM, Alder Lake-P Integrated Graphics Controller

total duration:       4m7.981004535s
load duration:        979.201µs
prompt eval count:    31 token(s)
prompt eval duration: 3.061771s
prompt eval rate:     10.12 tokens/s
eval count:           478 token(s)
eval duration:        4m4.913456s
eval rate:            1.95 tokens/s

Lenovo P1 (2018), Linux. Intel i8750H 6 cores / 12 threads, 32 GiB RAM, NVIDIA Quadro P1000

Die GPU wurde nicht genutzt.

total duration:       1m48.168754835s
load duration:        204.369µs
prompt eval duration: 146.12ms
prompt eval rate:     0.00 tokens/s
eval count:           629 token(s)
eval duration:        1m48.021933s
eval rate:            5.82 tokens/s 

MacBook Air 2020, M1, 8GiB RAM

total duration:       52.303529042s
load duration:        4.741221334s
prompt eval count:    31 token(s)
prompt eval duration: 331.908ms
prompt eval rate:     93.40 tokens/s
eval count:           567 token(s)
eval duration:        47.211456s
eval rate:            12.01 tokens/s

MacBook Air M2 2023, 24 GB

total duration:       35.853232792s
load duration:        5.297790333s
prompt eval count:    32 token(s)
prompt eval duration: 211.272ms
prompt eval rate:     151.46 tokens/s
eval count:           617 token(s)
eval duration:        30.343375s
eval rate:            20.33 tokens/s

MacBook Pro M3 Pro 2023, 36 GB

total duration:       28.392226667s
load duration:        5.532561667s
prompt eval count:    31 token(s)
prompt eval duration: 119.313ms
prompt eval rate:     259.82 tokens/s
eval count:           667 token(s)
eval duration:        22.740198s
eval rate:            29.33 tokens/s 

Bzw. mit llama3:8b: 26,6 tokens/s.

Windows PC i7 64GB RAM + Nvidia 3070

total duration:       12.9912206s
load duration:        5.2628606s
prompt eval count:    31 token(s)
prompt eval duration: 83.136ms
prompt eval rate:     372.88 tokens/s
eval count:           514 token(s)
eval duration:        7.644094s
eval rate:            67.24 tokens/s 

Linux PC, AMD Ryzen 5 7600 64 GB RAM + Nvidia RTX3090 mit 24 GB RAM

(mit llama3)

total duration:       5.008054596s
load duration:        899.374µs
prompt eval duration: 17.275ms
prompt eval rate:     0.00 tokens/s
eval count:           473 token(s)
eval duration:        4.948306s
eval rate:            95.59 tokens/s

Grundsätzlich kann Ollama GPUs nutzen (siehe auch hier und hier). Im Detail hängt es wie immer vom spezifischen GPU-Modell, von den installierten Treibern usw. ab. Wenn Sie unter Linux mit einer NVIDIA-Grafikkarte arbeiten, müssen Sie CUDA-Treiber installieren und ollama-cuda ausführen. Beachten Sie auch, dass das Sprachmodell im Speicher der Grafikkarte Platz finden muss, damit die GPU genutzt werden kann.

Apple-Rechner mit M1/M2/M3-CPUs sind für Ollama aus zweierlei Gründen ideal: Es gibt keinen Ärger mit Treibern, und der gemeinsame Speicher für CPU/GPU ist vorteilhaft. Die GPUs verfügen über so viel RAM wie der Rechner. Außerdem bleibt der Rechner lautlos, wenn Sie Ollama nicht ununterbrochen mit neuen Abfragen beschäftigen. Allerdings verlangt Apple leider vollkommen absurde Preise für RAM-Erweiterungen.

Zum Schluss noch eine Bitte: Falls Sie Ollama auf Ihrem Rechner installiert haben, posten Sie bitte Ihre Ergebnisse des Kommandos ollama run llama2 "write a python function to extract email addresses from a string" --verbose im Forum!

Quellen/Links

Weitere Links zum Thema GPU/NPU-Nutzung:

RasAP – Der perfekte Ad-Blocker zuhause

Es gibt unzählige Möglichkeiten, die Web-Werbung zu minimieren. Die c’t hat kürzlich ausführlich zum Thema berichtet, aber die entsprechenden Artikel befinden sich auf heise.de hinter einer Paywall. Und heise.de ist ja mittlerweile auch eine Seite, die gefühlt mindestens so viel Werbung in ihre Texte einbaut wie spiegel.de. Das ist schon eine Leistung … Entsprechend lahm ist der Seitenaufbau im Webbrowser.

Egal, alles, was Sie wissen müssen, um zuhause einigermaßen werbefrei zu surfen, erfahren Sie auch hier — kostenlos und werbefrei :-)

Auf dem Bild ist ein Raspberry Pi 3B+ mit angeschlossenem USB-WLAN-Adapter und Netzwerkkabel zu sehen. Der WLAN-Adapter ist über einen der USB-Ports verbunden, während das gelbe Ethernet-Kabel in den LAN-Port eingesteckt ist. Der Raspberry Pi wird zusätzlich über ein schwarzes Micro-USB-Kabel mit Strom versorgt.
Raspberry Pi 3B+ mit USB-WLAN-Adapter

Konzept

Die Idee ist simpel: Parallel zum lokalen Netzwerk zuhause richten Sie mit einem Raspberry Pi ein zweites WLAN ein. Das zweite Netz verwendet nicht nur einen anderen IP-Adressbereich, sondern hat auch einen eigenen Domain Name Server, der alle bekannten Ad-Ausliefer-Sites blockiert. Jeder Zugriff auf eine derartige Seite liefert sofort eine Null-Antwort. Sie glauben gar nicht, wie schnell die Startseite von heise.de, spiegel.de etc. dann lädt!

Alle Geräte im Haushalt haben jetzt die Wahl: sie können im vorhandenen WLAN des Internet-Routers bleiben, oder in das WLAN des Raspberry Pis wechseln. (Bei mir zuhause hat dieses WLAN den eindeutigen Namen/SSID wlan-without-ads.)

Das Bild zeigt ein Netzwerkdiagramm, in dem ein Raspberry Pi verwendet wird, um ein nahezu werbefreies WLAN-Netzwerk zu erstellen. Der Raspberry Pi ist über eine Ethernet-Buchse mit der IP-Adresse 192.168.178.123 an einen WLAN-Router (z.B. FritzBox) angeschlossen. Zusätzlich ist ein USB-WLAN-Adapter mit der IP-Adresse 10.3.141.1 verbunden, der das Netzwerk "wlan-without-ads" bereitstellt. Verschiedene Geräte wie ein Smartphone, Tablet und Notebook sind drahtlos mit diesem Netzwerk verbunden, erkennbar an den gestrichelten Linien und ihren jeweiligen IP-Adressen.
RaspAP auf dem Raspberry Pi spannt ein eigenes (beinahe) werbefreies WLAN auf

Zur Realisierung dieser Idee brauchen Sie einen Raspberry Pi — am besten nicht das neueste Modell: dessen Rechenleistung und Stromverbrauch sind zu höher als notwendig! Ich habe einen Raspberry Pi 3B+ aus dem Keller geholt. Auf dem Pi installieren Sie zuerst Raspbian OS Lite und dann RaspAP. Sie schließen den Pi mit einem Kabel an das lokale Netzwerk an. Der WLAN-Adapter des Raspberry Pis realisiert den Hotspot und spannt das werbefreie lokale Zweit-Netzwerk auf. Die Installation dauert ca. 15 Minuten.

Raspberry Pi OS Lite installieren

Zur Installation der Lite-Version von Raspberry Pi OS laden Sie sich das Programm Raspberry Pi Imager von https://www.raspberrypi.com/software/ herunter und führen es aus. Damit übertragen Sie Raspberry Pi OS Lite auf eine SD-Karte. (Eine SD-Karte mit 8 GiB reicht.) Am besten führen Sie gleich im Imager eine Vorweg-Konfiguration durch und stellen einen Login-Namen, das Passwort und einen Hostnamen ein. Sie können auch gleich den SSH-Server aktivieren — dann können Sie alle weiteren Arbeiten ohne Tastatur und Monitor durchführen. Führen Sie aber keine WLAN-Konfiguration durch!

Mit der SD-Karten nehmen Sie den Raspberry Pi in Betrieb. Der Pi muss per Netzwerkkabel mit dem lokalen Netzwerk verbunden sein. Melden Sie sich an (wahlweise mit Monitor + Tastatur oder per SSH) und führen Sie ein Update durch (sudo apt update und sudo apt full-upgrade).

RaspAP installieren

RaspAP steht für Raspberry Pi Access Point. Sein Setup-Programm installiert eine Weboberfläche, in der Sie unzählige Details und Funktionen Ihres WLAN-Routers einstellen können. Dazu zählen:

  • Verwendung als WLAN-Router oder -Repeater
  • freie Auswahl des WLAN-Adapters
  • frei konfigurierbarer DHCP-Server
  • Ad-Blocking-Funktion
  • VPN-Server (OpenVPN, WireGuard)
  • VPN-Client (ExpressVPN, Mullvad VPN, NordVPN)

An dieser Stelle geht es nur um die Ad-Blocking-Funktionen, die standardmäßig aktiv sind. Zur Installation laden Sie das Setup-Script herunter, kontrollieren kurz mit less, dass das Script wirklich so aussieht, als würde es wie versprochen RaspAP installieren, und führen es schließlich aus.

Die Rückfragen, welche Features installiert werden sollen, können Sie grundsätzlich alle mit [Return] beantworten. Das VPN-Client-Feature ist nur zweckmäßig, wenn Sie über Zugangsdaten zu einem kommerziellen VPN-Dienst verfügen und Ihr Raspberry Pi diesen VPN-Service im WLAN weitergeben soll. (Das ist ein großartiger Weg, z.B. ein TV-Gerät via VPN zu nutzen.)

Welche Funktionen Sie wirklich verwenden, können Sie immer noch später entscheiden. Das folgende Listing ist stark gekürzt. Die Ausführung des Setup-Scripts dauert mehrere Minuten, weil eine Menge Pakete installiert werden.

wget https://install.raspap.com -O raspap-setup.sh
less raspap-setup.sh
bash raspap-setup.sh

The Quick Installer will guide you through a few easy steps
Using GitHub repository: RaspAP/raspap-webgui 3.0.7 branch
Configuration directory: /etc/raspap
lighttpd root: /var/www/html? [Y/n]:
Installing lighttpd directory: /var/www/html
Complete installation with these values? [Y/n]:
Enable HttpOnly for session cookies? [Y/n]:
Enable RaspAP control service (Recommended)? [Y/n]:
Install ad blocking and enable list management? [Y/n]:
Install OpenVPN and enable client configuration? [Y/n]:
Install WireGuard and enable VPN tunnel configuration? [Y/n]:
Enable VPN provider client configuration? [Y/n]: n
The system needs to be rebooted as a final step. Reboot now? [Y/n]

Wenn alles gut geht, gibt es nach dem Neustart des Raspberry Pi ein neues WLAN mit dem Namen raspi-webgui. Das Passwort lautet ChangeMe.

Sobald Sie Ihr Notebook (oder ein anderes Gerät) mit diesem WLAN verbunden haben, öffnen Sie in einem Webbrowser die Seite http://10.3.141.1 (mit http, nicht https!) und melden sich mit den folgenden Daten an:

Username: admin
Passwort: secret

In der Weboberfläche sollten Sie als Erstes zwei Dinge ändern: das Admin-Passwort und das WLAN-Passwort:

  • Zur Veränderung des Admin-Passworts klicken Sie auf das User-Icon rechts oben in der Weboberfläche, geben einmal das voreingestellte Passwort secret und dann zweimal Ihr eigenes Passwort an.
  • Die Eckdaten des WLANs finden Sie im Dialogblatt Hotspot. Das Passwort können Sie im Dialogblatt Security verändern.

Das Bild zeigt die Benutzeroberfläche von RaspAP, einem Konfigurationstool für einen Raspberry Pi Hotspot. Im Fokus stehen die "Basic settings" für den Hotspot, darunter die Auswahl des Interfaces (wlan0), die SSID und der Wireless Mode (802.11g - 2.4 GHz). Außerdem ist der Kanal auf 1 eingestellt und es gibt Buttons zum Speichern der Einstellungen, zum Stoppen und zum Neustarten des Hotspots.
Die Weboberfläche von RaspAP mit den Hotspot-Einstellungen
Das Bild zeigt die Benutzeroberfläche einer Ad-Blocking-Konfiguration in einem Webbrowser. Im Abschnitt "Blocklist settings" ist die Option "Enable blocklists" aktiviert, um DNS-Anfragen für Werbung und Tracking zu blockieren. Es wird angezeigt, dass die Hostnamen- und Domänen-Blocklisten zuletzt vor drei Wochen aktualisiert wurden. Unten gibt es Buttons zum Speichern der Einstellungen und zum Neustarten des Ad-Blockings.
Bei den Ad-Block-Einstellungen sind keine Änderungen erforderlich. Es schadet aber nicht, hin und wieder die Ad-Blocking-Liste zu erneuern.

RaspAP verwendet automatisch den WLAN-Namen (den Service Set Identifier) raspi-webgui. Auf der Einstellungsseite Hotspot können Sie einen anderen Namen einstellen. Ich habe wie gesagt wlan-without-ads verwendet. Danach müssen sich alle Clients neu anmelden. Fertig!

USB-WLAN-Adapter

Leider hat der lokale WLAN-Adapter des Raspberry Pis keine großartige Reichweite. Für’s Wohnzimmer oder eine kleine Wohnung reicht es, für größere Wohnungen oder gar ein Einfamilienhaus aber nicht. Abhilfe schafft ein USB-WLAN-Antenne. Das Problem: Es ist nicht einfach, ein Modell zu finden, das vom Linux-Kernel auf Anhieb unterstützt wird. Ich habe zuhause drei USB-WLAN-Adapter. Zwei haben sich als zu alt erwiesen (kein WPA, inkompatibel mit manchen Client-Geräten etc.); der dritte Adapter (BrosTrend AC650) wird auf Amazon als Raspberry-Pi-kompatibel beworben, womit ich auch schon in die Falle getappt bin. Ja, es gibt einen Treiber, der ist aber nicht im Linux-Kernel inkludiert, sondern muss manuell installiert werden:

https://github.com/ElectricRCAircraftGuy/BrosTrendWifiAdapterSoftware

Immerhin gelang die Installation unter Raspberry Pi OS Lite auf Anhieb mit dem folgenden, auf GitHub dokumentierten Kommando:

sh -c 'busybox wget deb.trendtechcn.com/install \
       -O /tmp/install && sh /tmp/install'

Mit dem nächsten Neustart erkennt Linux den WLAN-Adapter und kann ihn nutzen. Das ändert aber nichts daran, dass mich die Installation von Treibern von dubiosen Seiten unglücklich macht, dass die Treiberinstallation nach jedem Kernel-Update wiederholt werden muss und dass die manuelle Treiberinstallationen bei manchen Linux-Distributionen gar nicht möglich ist (LibreELEC, Home Assistant etc.).

Wenn Sie gute Erfahrungen mit einem USB-WLAN-Adapter gemacht haben, hinterlassen Sie bitte einen kurzen Kommentar!

Sobald RaspAP den WLAN-Adapter kennt, bedarf es nur weniger Mausklicks in der RaspAP-Weboberfläche, um diesen Adapter für den Hotspot zu verwenden.

Alternativ können Sie den internen WLAN-Adapter auch ganz deaktivieren. Dazu bauen Sie in config.txt die folgende Zeile ein und starten den Raspberry Pi dann neu.

# Datei /boot/firmware/config.txt
...
dtoverlay=disable-wifi

Danach kennt Raspberry Pi OS nur noch den USB-WLAN-Adapter, eine Verwechslung ist ausgeschlossen.

Vorteile

Der größte Vorteil von RaspAP als Ad-Blocker ist aus meiner Sicht seine Einfachheit: Der Werbeblocker kann mit minimalem Konfigurationsaufwand von jedem Gerät im Haushalt genutzt werden (Opt-In-Modell). Sollte RaspAP für eine Website zu restriktiv sein, dauert es nur wenige Sekunden, um zurück in das normale WLAN zu wechseln. Bei mir zuhause waren alle Familienmitglieder schnell überzeugt.

Nachteile

  • Der Raspberry Pi muss per Ethernet-Kabel mit dem lokalen Netzwerk verbunden werden.
  • Manche Seiten sind so schlau, dass sie das Fehlen der Werbung bemerken und dann nicht funktionieren. Es ist prinzipbedingt unmöglich, für solche Seiten eine Ausnahmeregel zu definieren. Sie müssen in das normale WLAN wechseln, damit die Seite funktioniert.

  • youtube-Werbung kann nicht geblockt werden, weil Google so schlau ist, die Werbefilme vom eigenen Server und nicht von einem anderen Server zuzuspielen. youtube.com selbst zu blocken würde natürlich helfen und außerdem eine Menge Zeit sparen, schießt aber vielleicht doch über das Ziel hinaus.

  • Mit RaspAP sind Sie in einem eigenen privaten Netz, NICHT im lokalen Netz Ihres Internet-Routers. Sie können daher mit Geräten, die sich im wlan-without-ads befinden, nicht auf andere Geräte zugreifen, die mit Ihrem lokalen Router (FritzBox etc.) verbunden sind. Das betrifft NAS-Geräte, Raspberry Pis mit Home Assistant oder anderen Anwendungen etc.

Keine Werbeeinnahmen mehr für Seitenbetreiber?

Mir ist klar, dass sich viele Seiten zumindest teilweise über Werbung finanzieren. Das wäre aus meiner Sicht voll OK. Aber das Ausmaß ist unerträglich geworden: Mittlerweile blinkt beinahe zwischen jedem Absatz irgendein sinnloses Inserat. Werbefilme vervielfachen das Download-Volumen der Seiten, der Lüfter heult, ich kann mich nicht mehr auf den Text konzentrieren, den ich lese. Es geht einfach nicht mehr.

Viele Seiten bieten mir Pur-Abos an (also Werbeverzicht gegen Bezahlung). Diesbezüglich war https://derstandard.at ein Pionier, und tatsächlich habe ich genau dort schon vor vielen Jahren mein einziges Pur-Abo abgeschlossen. In diesem Fall ist es auch ein Ausdruck meiner Dankbarkeit für gute Berichterstattung. Früher habe ich für die gedruckte Zeitung bezahlt, jetzt eben für die Online-Nutzung.

Mein Budget reicht aber nicht aus, dass ich solche Abos für alle Seiten abschließen kann, die ich gelegentlich besuche: heise.de, golem.de, phoronix, zeit.de, theguardian.com usw. Ganz abgesehen davon, dass das nicht nur teuer wäre, sondern auch administrativ mühsam. Ich verwende diverse Geräte, alle paar Wochen muss ich mich neu anmelden, damit die Seiten wissen, dass ich zahlender Kunde bin. Das ist bei derstandard.at schon mühsam genug. Wenn ich zehn derartige Abos hätte, würde ich alleine an dieser Stelle schon verzweifeln.

Wenn sich Zeitungs- und Online-News-Herausgeber aber zu einem Site-übergreifenden Abrechnungsmodell zusammenschließen könnten (Aufteilung der monatlichen Abo-Gebühr nach Seitenzugriffen), würde ich mir das vielleicht überlegen. Das ist aber sowieso nur ein Wunschtraum.

Aber so, wie es aktuell aussieht, funktioniert nur alles oder nichts. Mit RaspAP kann ich die Werbung nicht für manche Seiten freischalten. Eine Reduktion des Werbeaufkommens auf ein vernünftiges Maß funktioniert auch nicht. Gut, dann schalte ich die Werbung — soweit technisch möglich — eben ganz ab.

📚 »Datenbanksysteme« (2. Aufl.) ist erschienen

Mein Lehrbuch Datenbanksysteme ist gerade in der 2. Auflage erschienen. Es richtet sich an Studierende, Entwickler und Datenbankanwender. Es erklärt, wie moderne Datenbankmanagementsysteme funktionieren. Es zeigt Ihnen, wie Sie Datenbanken korrekt und effizient entwerfen. Es erläutert den Umgang mit der Structured Query Language (SQL) und gibt einen Überblick über die Administration und Programmierung von Datenbanksystemen.

Cover

Unzählige Übungsaufgaben (mit Lösungen!) helfen Ihnen, das erlernte Wissen zu verfestigen und anzuwenden. Zusammen mit dem Buch erhalten Sie den Online-Zugriff auf mehrere Beispieldatenbanken, sodass Sie SQL-Kommandos ohne die langwierige Installation eines eigenen Datenbank-Servers ausprobieren können. Alternativ können Sie die zum Download angebotenen Beispieldatenbanken natürlich auch lokal installieren.

In das Buch fließt meine bald 30-jährige Erfahrung im Entwurf von Datenbanken, bei der Entwicklung von Datenbankanwendungen, bei der Administration von Datenbankmanagementsystemen (DBMS) sowie aus dem Unterricht ein. Ein besonderer Fokus des Buchs liegt im korrekten Datenbankdesign. Fehler, die in dieser Phase passieren, sind später praktisch nicht mehr zu korrigieren. Das Buch berücksichtigt auch neue Entwicklungen, von NoSQL bis hin zu modernen SQL-Features (Rekursion, Common Table Expressions, Window-Funktionen etc.).

Für die 2. Auflage habe ich den NoSQL-Teil des Buchs ausgebaut und um ein MongoDB-Kapitel ergänzt. Außerdem habe ich diverse Fehler korrigiert und da und dort kleine Ergänzungen und Verbesserungen vorgenommen.

Mehr Details zum Buch finden Sie hier.

Freiexemplar für Lehrpersonal

Wenn Sie auf der Fachhochschule oder Universität eine Datenbank-Vorlesung oder -Übung abhalten: Kontaktieren Sie dozenten@rheinwerk-verlag.de und fordern Sie ein kostenloses Belegexemplar an!

Fronius Wechselrichter in Home Assistant einbinden

Die letzten Wochen habe ich mich ziemlich intensiv mit Home Assistant auseinandergesetzt. Dabei handelt es sich um eine Open-Source-Software zur Smart-Home-Steuerung. Home Assistant (HA) ist eine spezielle Linux-Distribution, die häufig auf einem Raspberry Pi ausgeführt wird. Dieser Artikel zeigt die nicht ganz unkomplizierte Integration meines Fronius Wechselrichters in das Home-Assistant-Setup. (Die Basisinstallation von HA setze ich voraus.)

Das Bild zeigt eine Benutzeroberfläche des Home Assistant zur Überwachung des Energieverbrauchs und der Solarproduktion. Im oberen Bereich ist ein Balkendiagramm, das den Energieverbrauch über den Tag verteilt darstellt, mit unterschiedlichen Farben für verschiedene Verbrauchsquellen. Rechts daneben befindet sich eine grafische Darstellung der Energieverteilung mit Kreisdiagrammen und Verbindungslinien, die Solarproduktion, Netzbezug und Batteriespeicherung visualisieren. Unterhalb des Energieverbrauchsdiagramms ist ein weiteres Balkendiagramm, das die Solarproduktion in Kilowattstunden über den Tag zeigt. Am unteren Rand sind drei Kreisdiagramme, die zusätzliche Informationen wie eingespeiste Energiemenge, Prozentsatz des Selbstverbrauchs und die Effizienz der Solaranlage anzeigen.
Die Energieansicht nach der erfolgreichen Integration des Fronius Wechselrichters.

Die Abbildung ist wie folgt zu interpretieren: Heute bis 19:00 wurden im Haushalt 8,2 kWh elektrische Energie verbraucht, aber 13,6 kWh el. Energie produziert (siehe die Kreise rechts). 3,7 kWh wurden in das Netz eingespeist, 0,4 kWh von dort bezogen.

Das Diagramm »Energieverbrauch« (also das Balkendiagramm oben): In den Morgen- und Abendstunden hat der Haushalt Strom aus der Batterie bezogen (grün); am Vormittag wurde der Speicher wieder komplett aufgeladen (rot). Am Nachmittag wurde Strom in das Netz eingespeist (violett). PV-Strom, der direkt verbraucht wird, ist gelb gekennzeichnet.

Fronius-Integration

Bevor Sie mit der Integration des Fronius-Wechselrichters in das HA-Setup beginnen, sollten Sie sicherstellen, dass der Wechselrichter, eine fixe IP-Adresse im lokalen Netzwerk hat. Die erforderliche Einstellung nehmen Sie in der Weboberfläche Ihres WLAN-Routers vor.

Außerdem müssen Sie beim Wechselrichter die sogenannte Solar API aktivieren. Über diese REST-API können diverse Daten des Wechselrichters gelesen werden. Zur Aktivierung müssen Sie sich im lokalen Netzwerk in der Weboberfläche des Wechselrichters anmelden. Die relevante Option finden Sie unter Kommunikation / Solar API. Der Dialog warnt vor der Aktivierung, weil die Schnittstelle nicht durch ein Passwort abgesichert ist. Allzugroß sollte die Gefahr nicht sein, weil der Zugang ohnedies nur im lokalen Netzwerk möglich ist und weil die Schnittstelle ausschließlich Lesezugriffe vorsieht. Sie können den Wechselrichter über die Solar API also nicht steuern.

Das Bild zeigt einen Screenshot einer Weboberfläche zur Konfiguration einer Solar API von Fronius. Im oberen Bereich ist ein Hinweis zu sehen, der die Solar API als eine offene JSON-Schnittstelle beschreibt, die standardmäßig deaktiviert ist und aus Sicherheitsgründen nicht ohne Drittanbieter-Anwendung aktiviert werden sollte. Fronius empfiehlt für die Überwachung die Verwendung von Solar.web. Unten befindet sich ein Schalter zum Aktivieren der Kommunikation über die Solar API.
Aktivierung der Solar API in der lokalen Weboberfläche des Fronius-Wechselrichters

Als nächstes öffnen Sie in der HA-Weboberfläche die Seite Einstellungen / Geräte & Dienste und suchen dort nach der Integration Fronius (siehe auch hier). Im ersten Setup-Dialog müssen Sie lediglich die IP-Adresse des Wechselrichters angeben. Im zweiten Dialog werden alle erkannten Komponenten aufgelistet und Sie können diese einem Bereich zuordnen.

Das Bild zeigt eine Benutzeroberfläche, die den erfolgreichen Abschluss einer Konfiguration für SolarNet Inverter anzeigt. Vier Geräte wurden gefunden: "SolarNet (Fronius)", "Kofler Gen24 (Fronius)", "Smart Meter TS 65A-3 (Fronius)" und "BYD Battery-Box Premium HV (BYD)", alle im Bereich "Keller" zugeordnet. Unten rechts befindet sich ein Button mit der Beschriftung "FERTIG".
Setup der Fronius-Integration in der Weboberfläche von Home Assistant

Bei meinen Tests standen anschließend über 60 neue Entitäten (Sensoren) für alle erdenklichen Betriebswerte des Wechselrichters, des damit verbundenen Smartmeters sowie des Stromspeichers zur Auswahl. Viele davon werden automatisch im Default-Dashboard angezeigt und machen dieses vollkommen unübersichtlich.

Energieansicht

Der Zweck der Fronius-Integration ist weniger die Anzeige diverser einzelner Betriebswerte. Vielmehr sollen die Energieflüssen in einer eigenen Energieansicht dargestellt werden. Diese Ansicht wertet die Wechselrichterdaten aus und fasst zusammen, welche Energiemengen im Verlauf eines Tags, einer Woche oder eines Monats wohin fließen. Die Ansicht differenziert zwischen dem Energiebezug aus dem Netz bzw. aus den PV-Modulen und berücksichtigt bei richtiger Konfiguration auch den Stromfluss in den bzw. aus dem integrierten Stromspeicher. Sofern Sie eine Gasheizung mit Mengenmessung verfügen, können Sie auch diese in die Energieansicht integrieren.

Die Konfiguration der Energieansicht hat sich aber als ausgesprochen schwierig erwiesen. Auf Anhieb gelang nur das Setup des Moduls Stromnetz. Damit zeigt die Energieansicht nur an, wie viel Strom Sie aus dem Netz beziehen bzw. welche Mengen Sie dort einspeisen. Die Fronius-Integration stellt die dafür Daten in Form zweier Sensoren direkt zur Verfügung:

  • Aus dem Netz bezogene Energie: sensor.smart_meter_ts_65a_3_bezogene_wirkenergie
  • In das Netz eingespeiste Energie: sensor.smart_meter_ts_65a_3_eingespeiste_wirkenergie

Je nachdem, welchen Wechselrichter und welche dazu passende Integration Sie verwenden, werden die Sensoren bei Ihnen andere Namen haben. In den Auswahllisten zur Stromnetz-Konfiguration können Sie nur Sensoren
auswählen, die Energie ausdrücken. Zulässige Einheiten für derartige Sensoren sind unter anderem Wh (Wattstunden), kWh oder MWh.

Das Bild zeigt die Benutzeroberfläche von Home Assistant mit dem Fokus auf die Energie-Konfiguration. Es sind verschiedene Sektionen wie "Stromnetz", "Sonnenkollektoren", "Batteriespeicher zu Hause", "Gasverbrauch" und "Wasserverbrauch" zu sehen, die jeweils Optionen zum Hinzufügen von Verbrauchsdaten bieten. In der linken Seitenleiste sind weitere Menüpunkte wie "Mein Dashboard", "Energie" und "Einstellungen" sichtbar. Der Benutzername "Michael Kofler" ist unten links zu erkennen.
Konfiguration der Energie-Ansicht in Home Assistant

Code zur Bildung von drei Riemann-Integralen

Eine ebenso einfache Konfiguration der Module Sonnenkollektoren und Batteriespeicher zu Hause scheitert daran, dass die Fronius-Integration zwar aktuelle Leistungswerte für die Produktion durch die PV-Module und den Stromfluss in den bzw. aus dem Wechselrichter zur Verfügung stellt (Einheit jeweils Watt), dass es aber keine kumulierten Werte gibt, welche Energiemengen seit dem Einschalten der Anlage geflossen sind (Einheit Wattstunden oder Kilowattstunden). Im Internet gibt es eine Anleitung, wie dieses Problem behoben werden kann:

https://community.home-assistant.io/t/376329
https://www.home-assistant.io/integrations/integration

Die Grundidee besteht darin, dass Sie eigenen Code in eine YAML-Konfigurationsdatei von Home Assistant einbauen. Gemäß dieser Anweisungen werden mit einem sogenannten Riemann-Integral die Leistungsdaten in Energiemengen umrechnet. Dabei wird regelmäßig die gerade aktuelle Leistung mit der zuletzt vergangenen Zeitspanne multipliziert. Diese Produkte (Energiemengen) werden summiert (method: left). Das Ergebnis sind drei neue Sensoren (Entitäten), deren Name sich aus den title-Attributen im zweiten Teil des Listings ergeben:

  • Batterieladung: sensor.total_battery_energy_charged
  • Batterieentladung: sensor.total_battery_energy_discharged
  • PV-Produktion: sensor.total_photovoltaics_energy

Die Umsetzung der Anleitung hat sich insofern schwierig erwiesen, als die in der ersten Hälfte des Listungs verwendeten Sensoren aus der Fronius-Integration bei meiner Anlage ganz andere Namen hatten als in der Anleitung. Unter den ca. 60 Sensoren war es nicht ganz leicht, die richtigen Namen herauszufinden. Wichtig ist auch die Einstellung device_class: power! Die in einigen Internet-Anleitungen enthaltene Zeile device_class: energy ist falsch.

Der template-Teil des Listings ist notwendig, weil der Sensor solarnet_leistung_von_der_batterie je nach Vorzeichen die Lade- bzw. Entladeleistung enthält und daher getrennt summiert werden muss. Außerdem kommt es vor, dass die Fronius-Integration einzelne Werte gar nicht übermittelt, wenn sie gerade 0 sind (daher die Angabe eines Default-Werts).

Der zweite Teil des Listungs führt die Summenberechnung durch (method: left) und skaliert die Ergebnisse um den Faktor 1000. Aus 1000 Wh wird mit unit_prefix: k also 1 kWh.

Bevor Sie den Code in configuration.yaml einbauen können, müssen Sie einen Editor als Add-on installieren (Einstellungen / Add-ons, Add-on-Store öffnen, dort den File editor auswählen).

# in die Datei /homeassistant/configuration.yaml einbauen
...
template:
  - sensor:
      - name: "Battery Power Charging"
        unit_of_measurement: W
        device_class: power
        state: "{{ max(0, 0 -  states('sensor.solarnet_leistung_von_der_batterie') | float(default=0)) }}"
      - name: "Battery Power Discharging"
        unit_of_measurement: W
        device_class: power
        state: "{{ max(0, states('sensor.solarnet_leistung_von_der_batterie') | float(default=0)) }}"
      - name: "Power Photovoltaics"
        unit_of_measurement: W
        device_class: power
        state: "{{ states('sensor.solarnet_pv_leistung') | float(default=0) }}"

sensor:
    - platform: integration
      source: sensor.battery_power_charging
      name: "Total Battery Energy Charged"
      unique_id: 'myuuid_1234'
      unit_prefix: k
      method: left
    - platform: integration
      source: sensor.battery_power_discharging
      name: "Total Battery Energy Discharged"
      unique_id: 'myuuid_1235'
      unit_prefix: k
      method: left
    - platform: integration
      source: sensor.power_photovoltaics
      name: "Total Photovoltaics Energy"
      unique_id: 'myuuid_1236'
      unit_prefix: k
      method: left
Das Bild zeigt einen geöffneten Code-Editor mit einer YAML-Konfigurationsdatei für Home Assistant. Im Editor ist der Abschnitt für Sensoren zu sehen, der verschiedene Parameter wie "name", "unit_of_measurement" und "state" enthält. Links im Bild ist das Menü von Home Assistant mit Optionen wie "Dashboard", "Energie" und "Medien" sichtbar. Der Screenshot deutet auf die Konfiguration von Smart-Home-Geräten oder Automatisierungen hin.
In »configuration.yaml« müssen etliche Zeilen zusätzlicher Code eingebaut werden.

Damit die neuen Einstellungen wirksam werden, starten Sie den Home Assistant im Dialogblatt Einstellungen / System neu. Anschließend sollte es möglich sein, auch die Module Sonnenkollektoren und Batteriespeicher zu Hause richtig zu konfigurieren. (Bei meinen Experimenten hat es einen ganzen Tag gedauert hat, bis endlich alles zufriedenstellend funktionierte. Zwischenzeitlich habe ich zur Fehlersuche Einstellungen / System / Protokolle genutzt und musste unter Entwicklerwerkzeuge / Statistik zuvor aufgezeichnete Daten von falsch konfigurierten Sensoren wieder löschen.) Der Lohn dieser Art zeigt sich im Bild aus der Artikeleinleitung.

Das Bild zeigt die Benutzeroberfläche der Entwicklerwerkzeuge im Bereich Statistik eines Home Assistant Dashboards. Es sind verschiedene Sensoren mit ihren Statistik-IDs, dem Messwert in Kilowattstunden (kWh) und der Quelle 'recorder' aufgelistet. Alle Einträge zeigen an, dass kein Problem vorliegt.
Unter Entwicklerwerkzeuge/Statistik können Sie sich vergewissern, dass die neuen Sensoren korrekt eingerichtet sind.
Das Bild zeigt eine Benutzeroberfläche mit einer Verlaufskurve für die gesamte geladene Batterieenergie. Die Kurve steigt gegen Ende des Diagramms stark an und zeigt einen Wert von 79,429 kWh. Links im Bild ist ein Menü mit verschiedenen Optionen wie "Logbuch" und "Entwicklerwerkzeuge" zu sehen. Oben im Browserfenster sind mehrere Tabs und die Adressleiste mit einer nicht sicheren Verbindung zu erkennen.
Wenn ein Sensor angeklickt wird, erscheint eine Verlaufskurve.

Quellen/Links

❌